

Security Credential Management System

Design

Security system design for cooperative vehicle-

to-vehicle crash avoidance applications using

5.9 GHz Dedicated Short Range

Communications (DSRC) wireless

communications

www.its.dot.gov/index.htm

Draft Report — April 13, 2012

publication number

Produced by Walton Fehr

ITS Joint Program Office

Research and Innovative Technology Administration

U.S. Department of Transportation

Notice

This document is disseminated under the sponsorship of the Department of Transportation

in the interest of information exchange. The United States Government assumes no

liability for its contents or use thereof.

Technical Report Documentation Page
1. Report No.
FHWA-JPO-

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle
Security Credential Management System Design

Security system design for cooperative vehicle-to-vehicle crash avoidance
applications using 5.9 GHz Dedicated Short Range Communications
(DSRC) wireless communications

5. Report Date
April 13, 2012

6. Performing Organization Code

7. Author(s)

8. Performing Organization Report

No.

9. Performing Organization Name And Address

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

13. Type of Report and Period

Covered

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

17. Key Words

18. Distribution Statement

19. Security Classif. (of this report)

20. Security Classif. (of this page)

21. No. of

Pages

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Preface/

Acknowledgements

This work is based on CAMP VSC3 – Interoperability Issues of Vehicle-to-Vehicle Based

Safety System Project (V2V-Interoperability) – Task 5: Security Management - Subtask 2:

Security System Design Specification, September 14, 2011.

It is intended for use during the Safety Pilot Model Deployment.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | i

Table of Contents

Preface/ Acknowledgements .. iii

List of Figures ... v

List of Tables .. vi

List of Acronyms and Definitions .. vii

1. Introduction .. 9

1.1 RELEVANT DSRC STANDARDS .. 9

1.2 OUTLINE ... 9

2. Architecture Overview .. 10

3. Certificate Format .. 11

3.1 LINKED IDENTIFIERS ...11

3.1.1 Generation of a message certificate identifier11

3.1.2 Generation of fall-back certificate identifier 12

3.1.3 Revocation: Server ... 12

3.1.4 Revocation: LCM .. 12

3.2 IMPLICIT CERTIFICATES .. 12

3.3 FALL-BACK CERTIFICATES ... 12

2.4 CERTIFICATE BATCHES ... 12

3.5 ELLIPTIC CURVE POINTS .. 13

3.6 CERTIFICATE FILE FORMAT .. 13

4. CRL Management ... 14

5. OTA Message Formats .. 14

5.1 EXTENSIONS TO EXISTING 1609.2 MESSAGES 14

5.1.1 ContentType ... 14

5.1.2 1609Dot2Message ... 15

5.1.3 ToBeEncrypted .. 15

5.1.4 SignedMessage .. 16

5.1.5 Certificates: SubjectType, SubjectTypeFlags............... 17

5.1.6 RootCAScope .. 18

5.1.7 CertificateRequestErrorCode .. 19

5.2 BOOTSTRAPPING ... 19

5.2.1 Overview .. 19

5.2.2 LCM → RA (Request) .. 20

5.2.3 RA → LCM (Confirm).. 21

5.2.4 LCM → RA (Acknowledgement) 22

5.3 REQUEST CERTIFICATES ... 24

5.3.1 Overview .. 24

5.3.2 LCM → RA (Request) .. 26

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | ii

5.3.3 RA → LCM (Confirm).. 28

5.3.4 LCM → RA (Status Request) 29

5.3.5 RA → LCM (Status Confirm, success) 30

5.3.6 RA → LCM (Status Confirm, failure) 34

5.3.7 LCM → RA (Acknowledgement) 35

5.4 REQUEST DECRYPTION KEYS .. 36

5.4.1 Overview .. 36

5.4.2 LCM → RA (Request) .. 38

5.4.3 RA → LCM (Confirm, success) 38

5.4.4 RA → LCM (Confirm, failure) 39

5.4.5 LCM → RA (Acknowledgement) 40

5.5 REPORT MISBEHAVIOR ... 41

5.5.1 Overview .. 41

5.5.2 LCM → RA (Report) .. 42

5.5.3 RA → LCM (Acknowledgement) 43

5.6 REQUEST CRL .. 44

5.6.1 Overview .. 44

5.6.3 LCM → RA (Request) .. 45

5.6.3 RA → LCM (Confirmation, success) 46

5.6.4 RA → LCM (Confirmation, failure) 47

6. Model OBE Architecture .. 49

7. Model LCM Configuration Parameters .. 50

8. Security Server Architecture .. 53

8.1 DESIGN PREMISE .. 53

8.2 OVERVIEW .. 53

8.3.1 Parser .. 53

8.3.2 RA ... 53

8.3.3 CA ... 53

8.3.4 LA ... 53

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | iii

8.3 BOOTSTRAPPING ... 55

8.4 CALCULATION OF LINKAGE VALUES ... 56

8.5 REQUEST CERTIFICATES ... 57

8.6 REQUEST DECRYPTION KEY .. 61

8.7 MISBEHAVIOR REPORT AND REVOCATION 62

8.8 REQUEST CRL .. 66

8.9 KEYS ... 66

8.10 DATA STRUCTURES ... 67

9. Security Server Communication Socket .. 68

10. Security Server Configuration Parameters ... 68

11. Future Work ... 70

12. References ... 71

Appendix A: Certificate File Format .. 72

A.1 PRIVATE-KEY-CERTIFICATE-FILE-FORMAT 72

A.2 SHORT-LIVED CERTIFICATE FILES ... 73

Appendix B: Security Profiles .. 76

B.1 OVERALL.. 76

B.2 SECURITY PROFILE FOR BSM ... 76

B.2.1 General ... 76

B.2.2 Secure messaging (sending) ... 76

B.2.3 Secure messaging (receiving) 77

B.3 SECURITY PROFILE FOR OTHER SIGNED BUT NOT ENCRYPTED

MESSAGES .. 78

B.3.1 General ... 78

B.3.2 Secure messaging (sending) ... 78

B.3.3 Secure messaging (receiving) 78

B.3.4 Security management .. 79

B.4 SECURITY PROFILE FOR WME (WAVE SERVICE

ANNOUNCEMENTS) .. 79

B.4.1 Application security profile equivalents 80

B.4.2 Secure messaging (sending) ... 80

B.4.3 Secure messaging (receiving) 80

B.4.4 Security management .. 81

B.5 SECURITY PROFILE FOR CREDENTIAL MANAGEMENT MESSAGES

(SIGNED AND ENCRYPTED) ... 81

B.6 CERTIFICATES ... 82

B.6.1 Communications certificates .. 82

B.6.2 Certificate chains ... 82

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | iv

B.6.3 Root certificate ... 82

Appendix C: Connection requirements between LCM and Server 84

C.1 BOOTSTRAP .. 84

C.2 CERTIFICATE REQUEST .. 84

C.2.1 Certificate Request .. 84

C.2.2 Status Request ... 85

C.2.3 Acknowledgement .. 85

C.3 DECRYPTION-KEY REQUEST ... 85

C.4 REPORT MISBEHAVIOR .. 86

C.5 CRL REQUEST ... 86

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | v

List of Figures

Figure 1: Architecture Overview.. 10

Figure 2: OBE Architecture .. 49

Figure 3: Security Server Design Overview ... 54

file:///C:/Documents%20and%20Settings/kehoen/Desktop/SCMS/02-23-2012/Security%20Design%2020120218.docx%23_Toc317765873

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | vi

List of Tables

Table 1: LCM configuration parameters ... 50

Table 2: Security Server Configuration Parameters.. 68

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | vii

List of Acronyms and Definitions

CAMP Crash Avoidance Metrics Partnership

ITS Intelligent Transportation Systems

LA Linkage Authority

LCM Local Certificate Management

OTA Over-the-air

RA Registration Authority

USDOT United States Department of Transportation

VII Vehicle Infrastructure Integration

V-V or V2V Vehicle-to-Vehicle

OBE or OBU On Board Equipment/Unit

RSE or RSU Road Side Equipment/Unit

P1609 IEEE P1609 Standard

PSID Provider Service Identifier

J2735 SAE J2735 DSRC Message Set

BSM Basic Safety Message (BSM) “HeartBeat”

PKI Public Key Infrastructure

CRL Certificate Revocation List

CRT Certificate (Cert for short)

CSR Certificate Signing Request

SFAD Security Framework Access Device (external interface to PKI)

VoD Verify on Demand

Seed key

A public/private keypair which is used as input to generate another

public/private keypair. For example: when generating a request for an

implicit cert, the requester generates a seed key which the CA uses to

derive the final public key. Also for example: in the butterfly keys

model, the requester generates seed keys which are expanded into

encryption keys and into intermediate signing keys using the

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | viii

expansion function.

Expansion

function

The function used in the butterfly keys model to derive a series of

encryption keys from the seed encryption key, or to derive a series of

intermediate signing keys from the seed signing key.

Batch
A collection of all the short-lived certs for a particular time period,

encrypted as a batch by the RA.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120124 – Draft | 9

1. Introduction

This document describes a security system design for cooperative vehicle-to-vehicle crash

avoidance applications using 5.9 GHz Dedicated Short Range Communications (DSRC)

wireless communications [1].

1.1 Relevant DSRC Standards

For the DSRC standards (e.g., IEEE 802.11p, 1609.2-4, SAE J2735), please refer to IEEE

802.11p [2]; IEEE P1609 [4], [5], [6]; and SAE DSRC J2735 [3] Basic Safety Message

(BSM). The concept of operations is defined to verify good messages, protect against

attacks, identify misbehaving OBEs, mitigate attacks and ensure privacy as defined in SAE

J2945-1.

1.2 Outline

Sections 1-12 describe a security credential management system for cooperative vehicle-to-

vehicle crash avoidance applications.

Appendix A: Certificate File Format describes a certificate file format to store certificates and

corresponding private keys.

Appendix B: Security Profiles describes the security profile for all secure communication

types applied in Safety Pilot Model Deployment.

Appendix C: Connection requirements between LCM and Server clarifies requirements

regarding the LCM establishing and closing connections with the server, according to the

various phases of the message protocols.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 10

2. Architecture Overview

This section will give a general model of the system setup.

Two Linkage Authorities (LA1 and LA2) will provide linkage values to the Registration

Authority (RA). The RA provides certificates with the support of the Certificate Authority

(CA).

There is an OBE that request certificates from the RA. The OBE broadcast V2V safety

messages to other OBE, however, this mechanism is out of scope here. The OBE uses a local

certificate management (LCM) module to communicate to the RA. The LCM and RA

communicate using the previously defined over-the-air message formats. For the purposes of

this document, it is assumed that there is a reliable, but not necessarily permanent, connection

available between LCM and RA. Such a connection could be provided by cellular

connection, Wi-Fi connection, or by road-side equipment (RSE) via DSRC. For ease of

exlanation, the details are transparent and it is assumed that a security framework access

device (SFAD) is providing the connection between LCM and RA. An overview is shown in

Figure 1.

RA CA

LA 2 LA 1

SFAD API

OBE

OTA

Messages

LCM SFAD API

Figure 1: Architecture Overview

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 11

3. Certificate Format

3.1 Linked Identifiers

All message certificates (short-term and fall-back message certificates) are imprinted with a

linked identifier that allows efficient revocation. The linked identifier is encrypted, and the

encrypted value shall be different per certificate. Also retrospective unlinkability shall be

preserved: if a node is revoked, it shall not be possible to link certificates that were valid in

the past.

It is assumed that all short-term certificates are valid for a globally fixed time period l. The

server might adjust this value for all short-term certificates that are issued in the future. Fall-

back certificates shall also use a globally fixed time validity.

3.1.1 Generation of a message certificate identifier

In the general case, a vehicle can have up to n identifiers valid at a given time.

The CA generates the set of certificate IDs {CertID(w, i, j)} for vehicle w at time period (i, j)

(where j denotes a sub-period and i consists of n sub-periods, e.g. i describes days and j

describes intervals) as follows:

1. Select random s(w, 0) and calculate s(w, 1) = hash(s(w, 0))

2. Compute CertID(w, 1, j) = Encs(w, 1)(j) for j = 1, …, n

3. For each time period (i, j)

a. Calculate s(w, i+1) = hash(s(w, i))

b. Compute CertID(w, i, j) = Encs(w, i)(j) for j = 1, …, n

For the current system, there will be one certificate per time period (i, j). Otherwise another

counter r needs to be introduced. If certificates validity starts every 5 minutes with a 30

second overlap, then i describes days, j describes 5:30 minute intervals (with 30 seconds

overlap), and n = 288.

Time periods (i, j) are defined that i describes days and j time periods within days. A day

always starts at midnight. Time periods (i, j) are defined globally, starting January 1
st
, 2011,

UTC. E.g., (0, 0) describes the time period January 1
st
, 2011, 00:00:00 – 00:05:29, (0,1)

describes January 1
tst

, 2011, 00:05:00 – 00:10:29, and (3, 3) describes the time of January 4
th
,

2011, 00:15:00 - 00:20:29.

SHA-256 shall be used for hash H(), and AES-128 (ECB) shall be used for Enc().CertIDi,r

shall be the 10 least significant bytes of Enc(r, si), and values s are 128-bit keys. The values s

are used as key of AES, thus making it impossible for any instance to compromise the results

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 12

CertID by breaking the AES encryption. If we assume around 2
28

 vehicles, 2
24

 (around 5%)

revoked OBEs per year, and revoked OBEs are placed in the CRL for one year. Then for a 10

byte CertID, the likelihood of a false positive on the CRL (a benign OBE using the same

CertID as a revoked OBE for a given time period) in the system are one time period in 2
80-28-

24
 = 2

28
 which is about one false positive in the system every 2,550 years. Smaller revocation

rates and higher rate of false positive rates might allow to reduce the size of the CertID to 8

bytes.

The CA stores values s(w, 0), and the time (tstart, tend) when the first certificate of the set is

valid.

3.1.2 Generation of fall-back certificate identifier

It seems the easiest way of doing this is to consider fall-back certificates separately. Then to

revoke an OBE, we need two entries in the CRL: one for regular certs, another for the fall-

back certificate(s). Fall-back certificates use values (i, j) with i≥2
31

 and j=0.

3.1.3 Revocation: Server

First, the server determines the current time interval (i, j) at which the device was revoked.

The server then adds (s(w, i), i, max_i) to the CRL. The value max_i describes the time

period until the CRL entry is valid. This mechanism applies to both short-term and fall-back

certificates.

3.1.4 Revocation: LCM

Before a time interval starts, the LCM calculates the certID of revoked nodes for that time

interval (e.g. by updating si and calculating Enc(r, si)). Thus the LCM holds at all times a

(dynamic) list of revoked certificates for the current time interval. The list of revoked

certificates might comprise entries for short-term and for fall-back certificates.

3.2 Implicit Certificates

Implicit certificates according to IEEE 1609.2 D9.3 are used as message certificates.

3.3 Fall-Back Certificates

Fall-back certificates are always accessible by LCM, i.e. LCM does not need to request a

decryption key for fall-back certificates.

2.4 Certificate Batches

A large number of encrypted certificates is loaded at a time. This will be called batch-mode.

A batch is the set of certificates that is encrypted by the RA using an individual key. For

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 13

instance, if certificates worth one year are loaded, then there might be 12 batches each

including certificates worth one month.

3.5 Elliptic Curve Points

All elliptic curve points in these messages shall be expressed in compressed form.

3.6 Certificate File Format

A file format to store certificates and private keys is specified in Appendix A: Certificate File

Format.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 14

4. CRL Management

In this design, an extended IEEE 1609.2 CRL format is used to account for Linked

Identifiers. The RA will maintain an “internal” CRL (listing revoked CSR certs) to validate

LCM requests, and the CA will maintain the public revoked cert information repository. This

shall include maintaining, for each revoked unit, the CertID sequences for that unit and the

time at which the unit can be removed from the list of revoked units. It shall also include the

full set of individual CRLs sent to date.

Delta CRLs (ie CRLs that list only units that are newly revoked since the previous CRL) will

be used and sequentially numbered. The CA will issue a new Delta CRL at configurable

intervals. The CA will maintain both Delta CRLs and a whole CRL that lists all of the

currently revoked units with unexpired certs.

5. OTA Message Formats

5.1 Extensions to Existing 1609.2 Messages

This section defines extensions to the 1609.2 secured message types necessary to support the

security management functionality defined by CAMP. All messages sent shall be

encapsulated within 1609Dot2Messages with the modifications noted below.

5.1.1 ContentType

The ContentType enumerated type shall be extended as follows:

contentType Value

crl_req 236

crl_req_error 237

misbehavior_report_req 238

misbehavior_report_ack 239

cert_bootstrap_req 240

cert_bootstrap_cfm 241

cert_bootstrap_ack 242

anonymous_cert_request_req 243

anonymous_cert_request_cfm 244

anonymous_cert_request_status_req 245

anonymous_cert_request_status_cfm 246

sig_enc_cert 247

certificate_and_private_key_reconstruction_value 248

anonymous_cert_response_ack 249

anonymous_cert_decryption_key_req 250

anonymous_cert_decryption_key_cfm 251

anonymous_cert_decryption_key_error 252

anonymous_cert_decryption_key_ack 253

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 15

symmetric_encrypted 254

5.1.2 1609Dot2Message

The 1609Dot2Message structure shall be extended as follows:

 struct {

 uint8 protocol_version;

 ContentType type;

 select (type) {

 case unsecured :

 opaque message<var>;

 case signed, signed_partial_payload,

 signed_external_payload:

 SignedMessage signed_message;

 case signed_wsa:

 SignedWsa signed_wsa;

 case encrypted :

 EncryptedMessage encrypted_message;

 case crl_request :

 CrlRequest crl_request;

 case crl :

 Crl crl;

// begin new material

 case cert_bootstrap_req:

 CertificateRequest cr;

 case cert_bootstrap_cfm :

 BootStrapConfirm bsc;

 case cert_bootstrap_ack:

 BootStrapAcknowledgement bsa;

 case anonymous_cert_request_cfm

 SignedMessage cert_req_cfm;

 case symmetric_encrypted:

 SymmetricEncryptedMessage sem;

// end new material

 unknown:

 opaque message<var>;

 }

 } 1609Dot2Message;

5.1.3 ToBeEncrypted

The ToBeEncrypted message structure shall be extended as follows:

 struct {

 ContentType type;

 select(type) {

 case unsecured:

 opaqueExtLength plaintext;

 case signed, signed_external_payload,

 signed_partial_payload :

 SignedMessage signed_message;

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 16

 case certificate_request :

 CertificateRequest request;

 case certificate_response :

 ToBeEncryptedCertificateResponse

 response;

 case certificate_request_error:

 ToBeEncryptedCertificateRequestError

 request_error;

 case crl_request :

 CrlRequest crl_request;

 case crl :

 Crl crl;

 case certificate_response_acknowledgment:

 ToBeEncryptedCertificateResponseAcknowledgment

 ack;

// begin new material

 case anonymous_cert_request_req:

 case anonymous_cert_request_status_req:

 case anonymous_cert_response_ack:

 case anonymous_cert_decryption_key_req:

 case anonymous_cert_decryption_key_ack:

 case misbehavior_report_req:

 case misbehavior_report_ack:

 case crl_req:

 SignedMessage sm;

 case sig_enc_cert:

 SignedMessage sec<var>;

 case anonymous_cert_request_status_cfm:

 AnonymousCertRequestStatusCfm acbrsc;

 case anonymous_cert_decryption_key_cfm:

 AnonymousCertDecryptionKeyCfm ascdkrc;

 case anonymous_cert_decryption_key_error

 ToBeEncryptedDecryptionKeyRequestError err;

 case certificate_and_private_key_reconstruction_value:

 CertificateAndPrivKeyReconstructionValue cpkrv;

 case crl_req_error:

 ToBeEncryptedCrlReqError tbecre;

// end new material

 unknown:

 opaque message<var>;

 }

 } ToBeEncrypted;

5.1.4 SignedMessage

The SignedMessage type shall be extended as follows:

 struct {

 extern ContentType type;

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 17

 SignerIdentifier signer;

 select (type) {

 case signed, signed_partial_payload,

 signed_external_payload:

 ToBeSignedMessage unsigned_message;

 case anonymous_cert_request_req:

 ToBeSignedAnonymousCertRequestReq acrbrr;

 case anonymous_cert_request_cfm;

 AnonymousCertRequestConfirm acrc;

 case anonymous_cert_request_status_req:

 ToBeSignedAnonymousCertRequestStatusReq acrsr;

 case sig_enc_cert:

 ToBeSignedEncCert tbsec;

 case anonymous_cert_response_ack:

 ToBeSignedAnonymousCertResponseAck tbsaca;

 case anonymous_cert_decryption_key_req:

 ToBeSignedAnonymousCertDecryptionKeyReq acdkr;

 case anonymous_cert_decryption_key_ack:

 ToBeSignedAnonymousCertDecryptionKeyAck tbsacdka;

 case misbehavior_report_req:

 ToBeSignedMisbehaviorReportReq tbsmrr;

 case misbehavior_report_ack:

 ToBeSignedMisbehaviorReportAck tbsmra;

 case crl_req:

 ToBeSignedCrlReq tbscr;

 }

 Signature signature;

 } SignedMessage;

5.1.5 Certificates: SubjectType, SubjectTypeFlags

 enum { message_anonymous(0),

 message_identified_not_localized (1),

 message_identified_localized (2),

 message_csr (3)

 wsa (4),

 wsa_csr (5),

 message_ca(6), wsa_ca (7), crl_signer(8),

// new material

 message_ra (9)

// end new material

 ...

 root_ca (255),

 (2^8-1)

 } SubjectType;

 flags { message_anonymous(0),

 message_identified_not_localized (1),

 message_identified_localized (2),

 message_csr (3)

 wsa (4),

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 18

 wsa_csr (5),

 message_ca(6), wsa_ca (7), crl_signer(8),

// new material

 message_ra (9)

// end new material

 } SubjectTypeFlags;

A certificate with SubjectType value message_ra is identical in syntax to a certificate with

SubjectType value message_ca. In other words, in every 1609.2 structure that has a select() or

if_any_set() statement with an entry for case message_ca, that should be read as case

message_ca message_ra. This applies to ToBeSignedCertificate, CertSpecificData,

RootCaScope, CertRequestSpecificData.

An RA certificate may not be used to sign another certificate, while a CA certificate may.

5.1.6 RootCAScope

The RootCAScope type shall be extended as follows:

 struct {

 uint8 name<var>;

 RootCAScope

 permitted_subject_types;

 if_any_set (permitted_subject_types, message_ca,

 message_csr, message_identified_localized,

 message_identified_not_localized,

 message_anonymous

// new material

 ,message_ra

// end new material

) {

 RootCAScope

 message_permissions;

 }

 if_any_set (permitted_subject_types, wsa_ca,

 wsa_csr, wsa) {

 RootCAScope wsa_permissions;

 }

 if_value_not_in (permitted_subject_types,

 message_ca,

 message_csr, message_identified_localized,

 message_identified_not_localized,

 message_anonymous, wsa_ca,

 wsa_csr, wsa

// new material

 ,message_ra, crl_signer

// end new material

) {

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 19

 opaque other_permissions<var>;

 }

 RootCAScope region;

 } RootCAScope;

5.1.7 CertificateRequestErrorCode

The CertificateRequestErrorCode shall be extended as follows:
 enum { csr_cert_verification_failure(0), csr_cert_expired(1),

 csr_cert_revoked(2), csr_cert_unauthorized(3),

 request_denied(4), csr_cert_unknown (5),

 canonical_identity_unknown (6),

 certificate_response_not_ready (7),

 cert_set_start_time_in_past (8),

 cert_set_start_time_too_far_in_future (9),

 cert_set_end_time_too_close_to_start_time (10),

 cert_set_end_time_too_far_from_start_time (11),

 requested_smaller_than_minimum_batch_duration (12),

 requested_larger_than_maximum_batch_duration (13),

 requested_past_decryption_keys (14),

 requested_far_future_decryption_keys (15),

 invalid_signature (16),

 invalid_request_hash (17),

 invalid_response_encryption_key(18),

 invalid_status (19),

 invalid_algorithm (20),

 current_time_in_past(21),

 current_time_in_future(22),

 ... (255)

 } CertificateRequestErrorCode;

5.2 Bootstrapping

5.2.1 Overview

Before bootstrapping, the CA does the following with mechanisms which may or may not be

the same as the mechanisms in this document:

 Generates a cert for the RA and makes it available to the RA.

 Generates a cert for the CA and makes it available to the RA

On bootstrap, the LCM does the following:

 Generates a seed key for the CSR cert (the implicit cert). This is expressed in

compressed form.

 Generates a ToBeSignedCertificateRequest for the CSR cert

 Signs it with the seed private key to form a CertificateRequest

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 20

 Encapsulates it in a 1609Dot2Message of type cert_bootstrap_req and sends it to

the RA.

The RA sends the cert request to the CA.

The CA forms the implicit certificate for the CSR cert and returns it to the RA.

The RA

 Forms a ToBeEncryptedCertificateResponse containing the implicit cert, the CA

cert, and the private key reconstruction value

 Forms a BootStrapConfirm containing the ToBeEncryptedCertificateResponse

and the RA Certificate

 Encapsulates the BootStrapConfirm in a 1609Dot2Message and sends it to the

LCM.

The LCM:

 Sends a BootStrapAck.

 Stores the RA certificate and CA certificate

 Reconstructs the private key for the implicit CSR cert using the reconstruction

value and stores that private key and cert.

Note: the bootstrap mechanism must be executed in a secure environment. The Security

Server must be able to recognize whether an LCM is authorized to request credentials.

The details of how this process is performed will depend upon policy decisions.

Therefore in this design it is assumed that the bootstrap is executed in a secure

environment, that OBE vendors are trustworthy, and that OBE vendors only execute

bootstrap for authorized LCMs. In order to control the bootstrap execution, the Security

Server must explicitly enable bootstrap process by setting the proper configuration flag,

or by human intervention.

Note: in this design, we implement the initialization and re-initialization of an LCM

(after revocation) as a bootstrap. We implement pre-loading of an LCM as bootstrap +

request of certificates:

re-init (after revocation) = init = bootstrap

pre-loading = bootstrap + certificate request

5.2.2 LCM → RA (Request)

The LCM requests a bootstrap with a 1609Dot2Message of type cert_bootstrap_req

containing a CertificateRequest. It is assumed that the message is sent within a secure

environment and as such this message is not explicitly protected by 1609.2 mechanisms.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 21

Within the structure the fields have the following meaning:

 request is a standard CertificateRequest for a CSR cert in which:

o info.type shall be self;

o the signature is generated using the private key corresponding to the public

key in the verification_key field.

 In the ToBeSignedCertificateRequest:

o the subject_type field shall be message_csr;

o the permitted_subject_types field in the MessageCaScope shall contain only

the value message_anonymous;

o the name field in the MessageCaScope shall contain a unique identifier for

the LCM;

o the permissions field in the MessageCaScope shall contain the PSIDs from

which the originator of this intends to send application messages;

o the region field in the MessageCaScope shall be of type NONE;

o the content flags use_start_validity shall be set and the start_validity field

shall be filled in with 00:00:00 am, Jan 1, 2011;

o the field expiration shall be set to 11:59:59 pm, June 30, 2013

o the field verification_key shall contain the seed public verification key of the

sender. This shall be an ECDSA-256 key in compressed form.

o the content flag encryption_key shall not be set;

o the field response_encryption_key may contain a freshly generated ECIES-

NISTp256 encryption public key or may be all NULLs – this field is not

processed at the receiving end so it doesn’t matter what’s in it.

5.2.3 RA → LCM (Confirm)

struct {

Certificate ra_certificate;

 ToBeEncryptedCertificateResponse resp;

} BootStrapConfirm;

This type is used to return a bootstrap response to the requesting LCM. It shall be

encapsulated within a 1609Dot2Message of type cert_bootstrap_cfm. It is not encrypted.

 the ra_certificate field shall contain the RA’s public encryption and verification key.

The LCM shall use these keys for messaging the RA. For this design, The RA

certificate shall have the following properties:

o It shall be an explicit certificate (version_and_type = 2)

o The signing key shall be an ECDSA-256 key given in compressed form.

o subject_type shall be message_ra.

o It shall have expiration time set to June 30, 2013 and crl_series set to 1.

o It shall not have the ContentFlag values use_start_validity or

content_is_duration set.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 22

o It shall have the ContentFlag value encryption_key set and contain an

encryption key for ECIES-256 given in compressed form.

o All permissions fields within the MessageCaScope will be identical to the

equivalent fields in the CA certificate, defined below, with the exception that

the SubjectFlags shall be 83 ff (anonymous, identified not localized,

identified localized, message_csr, wsa, message_ca, wsa_ca, crl_signer,

message_ra, message_ra)

 The certificate_chain field in resp shall contain a chain of length 2, consisting of the

CA cert (which will have subject_type equal to root_ca) and the requester’s CSR cert.

o The CSR cert is not guaranteed to have the same values in any fields as were

provided in the corresponding field in the request.

o The CA cert shall have the following properties:

 It shall be an explicit certificate (version_and_type = 2)

 subject_type shall be root_ca.

 It shall have expiration time set to June 30, 2013 and crl_series set to

1.

 It shall not have the ContentFlag values use_start_validity or

content_is_duration set.

 The signing key shall be an ECDSA-256 key given in compressed

form.

 It shall have the ContentFlag value encryption_key set and contain an

encryption key for ECIES-256 given in compressed form.

 The contents of the RootCaScope shall be:

 Name: No name provided

 SubjectFlags encoding: 83 ff (anonymous, identified not

localized, identified localized, message_csr, wsa, message_ca,

wsa_ca, crl_signer, message_ra, message_ra)

 Message Permissions: psid: 0x10 – 0x14 (16 -20)

 Wsa Permissions: psid: 1 priority: 1

 Geographic Region: None

 the crl_path shall contain a single CRL. It shall be the most current whole CRL. The

CRL shall have the format as defined in Section 5.6.3 LCM → RA (Request)

 .

 The flags field in resp shall be the value 0.

5.2.4 LCM → RA (Acknowledgement)

struct {

 opaque response_hash[10];

} BootStrapAcknowledgement;

This type is used to signify to the RA that the bootstrapping process was successfully

completed. It shall be encapsulated within a 1609Dot2Message of type cert_bootstrap_ack.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 23

In this design, the LCM shall generate and send a bootstrap acknowledgement once it

receives a BootStrapConfirm. It does not need to perform any checks on the contents of the

BootStrapConfirm before sending the ack.

The response_hash field is the low-order ten bytes of the hash of the encoded

BootStrapConfirm message contained in the response from the RA to the LCM.

If the RA does not receive a BootStrapAcknowledgement within a configurable timeout

period, it shall resend the response.

If the RA receives a BootStrapAcknowledgement with an incorrect response_hash value, it

shall resend the response.

If the RA receives an incorrect response_hash three times, it shall stop sending the response

and log an error.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 24

5.3 Request Certificates

5.3.1 Overview

 The LCM:

o Generates a ToBeSignedAnonymousCertRequestReq

o Signs it with the CSR certificate to create a SignedMessage.

o Creates a ToBeEncrypted of type anonymous_cert_request_req

o Encrypts it with the RA’s encryption key to create an EncryptedMessage

o Encapsulates that in a 1609Dot2Message of type encrypted

o Sends it to the RA

 The RA:

o Decrypts the request

o Hashes the request

o Creates a signed message of (external) type anonymous_cert_request_cfm

containing the hash of the request and the signature.

o Encapsulates that in a 1609Dot2Message of type anonymous_-

cert_request_cfm.

o Sends it to the LCM.

If the signature verifies and the hash is correct, the LCM takes no action. If the signature

verifies and the hash is wrong the LCM resends the request. If the signature does not verify

then the LCM takes no action.

Meanwhile, the following processing takes place internally at the PKI:

 The RA:

o Verifies the request and determines whether to issue the cert

o Uses the seed keys and expansion functions in the request to generate

individual cert requests for each cert containing request-specific signing

keys and encryption keys.

o Sends the individual cert requests to the CA, along with (i, j) for each cert.

 The CA, for each certificate

o Generates the certificate and c

o Encodes them in a CertificateAndPrivKeyReconstructionValue

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 25

o Creates a ToBeEncrypted of type

certificate_and_private_key_reconstruction_value

o Encrypts it with the request-specific ECIES key to form an

EncryptedMessage

o Creates a ToBeSignedEncCert containing the encrypted certificate and

information about i, j, start time, and end time.

o Signs it to form a SignedMessage of (external) type sig_enc_cert.

o Returns the SignedMessage to the RA along with an indication of the cert

request that the SigEncCert is associated with (from which the RA can

extract i and j) and the start / end times of the cert (this return message is

not specified in this document).

After a while, the LCM re-establishes a connection with the PKI and requests status.

 The LCM:

o Generates a ToBeSignedAnonymousCertRequestStatusReq

o Signs it to generate a SignedMessage of (external) type

anonymous_cert_request_status_req.

o Creates a ToBeEncrypted of (explicit) type

anonymous_cert_request_status_req.

o Encrypts it with the RA’s public key to form an EncryptedMessage

o Encapsulates it in a 1609Dot2Message of type encrypted

o Sends it to the RA.

 The RA:

o If the cert issuance is approved and the certs are ready:

 For each batch period:

 Collects the SignedMessages of type sig_enc_cert for that

batch.

 Creates a ToBeEncrypted of type sig_enc_cert and contents

SigEncCert<var> containing all the certs for the period

 Encrypts the ToBeEncrypted with AES-CCM to obtain an

AesCcmCiphertext. Stores the key somewhere.

 Creates an EncryptedCertificateBatch containing the

AesCcmCiphertext and the other fields.

 Aggregates all the EncryptedCertificateBatches to be included in

the response, and the fallback certs, into an

AnonymousCertRequestStatusCfm, along with the permissions

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 26

 Creates a ToBeEncrypted of type anonymous_cert_request-

_status_cfm containing the AnonymousCertRequestStatusCfm.

 Encrypts with the response_encryption_key from the status request

and forms a SymmetricEncryptedMessage

 Encapsulates the SymmetricEncryptedMessage in a

1609Dot2Message of type symmetric_encrypted.

 Sends to the LCM.

o If the cert issuance is not approved or the certs are not ready:

 Creates and signs a ToBeEncryptedCertificateRequestError as

described in 1609.2 with the appropriate error code (see extensions

to CertificateRequestErrorCode above)

 Encrypts it with the response_encryption_key from the status

request to form an EncryptedMessage

 Encapsulates the SymmetricEncryptedMessage in a

1609Dot2Message of type symmetric_encrypted.

 Sends to the LCM.

 The LCM:

o Decrypts the message

o Sends an ACK.

o Immediately sends a request to decrypt the first batch of certificates (see

next section).

o If appropriate, attempts to decrypt the first fallback cert.

5.3.2 LCM → RA (Request)

struct {

 PublicKey A;

 PublicKey H;

 uint8 s[16];

 uint8 e[16];

 PsidSspArray permissions;

 GeographicRegion region;

 Time32 current_time;

 Time32 start_time;

 Time32 end_time;

 CertificateDuration batch_duration;

 uint32 storage_space_kb;

 CertId8 known_cas<var>

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 27

} ToBeSignedAnonymousCertRequestReq;

This type is used to allow the sender to request the anonymous certificates. It shall be signed

with the CSR certificate to create a SignedMessage of (external) type anonymous_-

cert_request_req. This shall be included within a ToBeEncrypted of (explicit) type

anonymous_cert_request_req. This shall be encrypted with the public key of the RA,

obtained from its certificate, to produce an EncryptedMessage. This in turn shall be

encapsulated within a 1609Dot2Message of type encrypted.

In the SignedMessage:

 the signer.type field shall be certificate and signer.certificate shall be the CSR cert that

the requester obtained on bootstrap.

 the signature field shall be the signature, calculated over the encoding of acrbrr, using

the private key corresponding to the public verification key in signer.certificate.

In the ToBeSignedAnonymousCertRequestReq:

 the A field shall contain the seed public key for signing. This shall be an ECDSA-256

key given in compressed form.

 the H field shall contain the seed public key for encryption. This shall be an ECIES-

256 key given in compressed form.

 the s field shall contain a randomly-generated 16-byte AES key, which will be used to

generate the cocoon keys for signing.

 the e field shall contain a randomly-generated 16-byte AES key, which will be used to

generate the cocoon keys for encryption.

 The permissions field shall contain the permissions being requested. In this design, it

shall contain a single PSID and a NULL SSP for that PSID.

 The region shall be none.

 the current_time field shall contain the current time.

 the start_time field shall contain the time at which the validity period is requested to

begin for the short-lived certificates.

 the end_time field shall contain the time at which the validity period is requested to

end for the short-lived certificates.

 the batch_duration field shall contain the requested duration of each encrypted batch

of certificates.

 the storage_space_kb field shall contain the maximum amount of space (in kb, i.e.

blocks of 1024 bytes) that the requester has available to store the requested certs.

 the known_cas field shall contain the CertID8s for all the CAs that the requester

recognizes.

The PKI shall prepare certs as follows.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 28

 The PKI shall return at least enough fallback certs to enable the vehicle to operate for

up to GCM_T_reload_fallBack (as defined in Section 10. Security Server

Configuration Parameters) from current_time.

 The PKI shall return short-lived certs such that the total space taken up by the certs is

no more than storage_space_kb and the final cert’s start time is no later than the value

in the end_time field. The PKI shall always return that number of fallback certs and

may at its discretion return less short-lived certs than the maximum.

5.3.3 RA → LCM (Confirm)

struct {

 uint8 accept;

 Time32 request_time;

 opaque request_hash[10];

 select(accept) {

 case 0:

 CertificateRequestErrorCode reason;

 }

} AnonymousCertRequestConfirm;

To confirm receipt of an anonymous certificate request, the RA shall send the OBE a

confirmation message. The RA starts by creating an AnonymousCertRequestConfirm. In this

structure:

 accept is a 1 if the anonymous_cert_request_req was acceptable to the server

otherwise it is a 0

 request_time is the time the request was generated

 request_hash is the low-order ten bytes of the SHA-256 hash of the encoded

ToBeSignedAnonymousCertRequestReq contained in the request from the OBE to

the RA.

 reason is the reason code why the request is not acceptable.

The RA signs this message with its certificate to create a SignedMessage of (external) type

anonymous_cert_request_cfm, and encapsulates it within a 1609Dot2Message of (explicit)

type anonymous_cert_request_cfm.

If the LCM does not receive a correct confirm (in other words, if it receives no confirm, or

only confirms whose signatures do not verify) within a configurable timeout period, it shall

regenerate and resend the request, including regenerating A, H, s and e.
1

1
 Regenerating the request means that the current time field in the AnonymousCertRequest

will change, as will the encapsulation within a 1609.2 EncryptedMessage. Therefore, an

eavesdropper will not be able to tell the difference between a resend and an initial send.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 29

If the LCM receives a confirm whose signature verifies but which contains an incorrect

request_hash value, it shall regenerate and resend the request.

If the LCM receives distinct confirms with an incorrect request_hash value three times in a

row (in other words, the signature is valid, the timestamp in each of the three confirm

messages is distinct, but the request_hash is wrong), it shall stop trying to send the request

and put itself in an appropriate error state (eg logging the error).
2

If the reason is:

 csr_cert_verification_failure(0), the LCM shall regenerate and resend the certificate

request

 csr_cert_expired(1), csr_cert_revoked(2), csr_cert_unauthorized(3),

request_denied(4), csr_cert_unknown (5), or canonical_identity_unknown (6), the

LCM shall log the error and go into an error state

 cert_set_start_time_in_past (8), cert_set_start_time_too_far_in_future (9),

cert_set_end_time_too_close_to_start_time (10),

cert_set_end_time_too_far_from_start_time (11),

requested_smaller_than_minimum_batch_duration (12), or

requested_larger_than_maximum_batch_duration (13), the LCM shall log the

message and go into an error state.

 invalid_signature (16), the LCM shall regenerate and resend the certificate request.

 All other error codes are not valid in this case. If the LCM receives an invalid error

code, it shall log an error and regenerate and resend the certificate request.

5.3.4 LCM → RA (Status Request)

struct {

 Time32 current_time;

 CertificateProcessingStatus status;

 opaque request_hash[10];

 SymmAlgorithm alg;

 opaque response_encryption_key [16];

} ToBeSignedAnonymousCertRequestStatusReq;

enum { success (0), first_request(1), got_certs_not_ready(2),

 timeout(3), err_decrypt (4), .. (255)

} CertificateProcessingStatus;

2
 This is the reason for including the current_time in the confirm message. Otherwise, if an

attacker could detect an incorrect confirm message, they could replay it three times and this

would effectively provide a kill switch for the OBE.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 30

After sufficient time has passed, the LCM can use this type to request that the RA provides

the previously requested certificates.

 current_time is the time the status request was generated.

 status is the LCM’s understanding of the status. It shall be:

o first_request if this is the first status request with a given request_hash value;

o got_certs_not_ready if the last status request with this request_hash value

received an error response with CertificateRequestErrorCode value

certificate_response_not_ready;

o timeout if the LCM did not receive a response within the configurable

timeout time to the last status request with this request_hash value;

o err_decrypt if the LCM got an error decrypting the response to the last status

request with this request_hash value.

 request_hash is the low-order ten bytes of the SHA-256 hash of the encoded

ToBeSignedAnonymousCertRequestReq contained in the request from the LCM to

the RA

 alg shall be aes_128_ccm.

 the response_encryption_key field shall contain the AES-CCM key to be used to

encrypt the response. The LCM shall generate a fresh response encryption key every

time it generates a ToBeSignedAnonymousCertRequestStatusReq and shall not (or

shall only with negligible probability) repeat response encryption keys.

This is signed and encapsulated in a SignedMessage, which is then put inside a

ToBeEncrypted with type anonymous_cert_request_status_req, which is then encrypted with

the public key of the RA and encapsulated within a 1609Dot2Message of type encrypted.

The LCM is not assumed to preserve records of any status request other than the most recent

one, i.e. the one with the latest current_time value.

5.3.5 RA → LCM (Status Confirm, success)

The RA shall return the anonymous certificates within a 1609Dot2Message of type

symmetric_encrypted. This shall contain a SymmetricEncryptedMessage, as follows:
struct {

 SymmAlgorithm alg;

 opaque key_id[8];

 AesCcmCiphertext ciphertext;

} SymmetricEncryptedMessage;

In this structure:

 alg is the algorithm used to encrypt the message

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 31

 key_id is the low-order 8 bytes of the SHA-256 hash of the key used to encrypt

the message. This shall be the response_encryption_key from the corresponding

ToBeSignedAnonymousCertRequestStatusReq.

 ciphertext is the encrypted data.

When the ciphertext is decrypted with the key indicated by key_id, the result shall be a

ToBeEncrypted with type anonymous_cert_request_status_cfm and contents equal to a

message of type AnonymousCertRequestStatusCfm:

struct {

 opaque request_hash[10];

 PsidSspArray permissions;

 GeographicRegion region;

 EncryptedCertificateBatch short_lived_certs<var>;

 UnencryptedCertificateBlock fallback_certs;

} AnonymousCertRequestStatusCfm;

The type AnonymousCertRequestStatusCfm is used by the RA to return the anonymous

certificates. In the AnonymousCertRequestStatusCfm:

 request_hash is the low-order ten bytes of the SHA-256 hash of the encoded

ToBeSignedAnonymousCertRequestReq message contained in the request from the

LCM to the RA

 permissions contains the permissions field that appears in every certificate

 region contains the region field that appears in every certificate

 The short_lived_certs field shall contain one or more instances of the data structure

EncryptedCertificateBatch, each encapsulating an encrypted batch of short-lived

certs.

 The fallback_certs field shall contain a single instance of the data structure

UnencryptedCertificateBlock encapsulating a block of fallback certs.

struct {

 uint8 cert_batch_id[8];

 Time32 start_time;

 Time32 end_time;

 uint32 validity_period;

 uint32 overlap_period;

 AesCcmCiphertext enc_batch;
3

} EncryptedCertificateBatch;

3
 When these message formats are migrated back to 1609.2 we’ll need make this switch on a

SymmAlgorithm value, but this definition is fine for now as only AES is defined.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 32

The type EncryptedCertificateBatch contains a batch of encrypted certificates, for example

the encryption of all of the certificates for a given month. The fields in the

EncryptedCertificateBatch have the following meanings.

 the cert_batch_id field shall identify the batch of certificates for which the request is

being processed and shall be used to associate a batch decryption key with the batch

to be decrypted. It shall be determined by the RA and shall be unique for every

encrypted certificate batch sent from the RA to the LCM.

 the start_time field shall contain the time at which the validity period begins for the

first certificate in the batch.

 the end_time field shall contain the time at which the validity period ends for the last

certificate in the batch.

 the validity_period field shall contain the validity period in seconds for each

certificate in the batch.

 the overlap_period field shall contain the overlap period in seconds for each

certificate in the batch.

 the enc_batch field shall contain the ciphertext of the array of encrypted certificates.

When decrypted, the AesCcmCiphertext enc_batch shall contain a ToBeEncrypted of type

sig_enc_cert and the contents shall be a collection of SignedMessages (note the “<var>” in

the definition in Section 5.1.3 ToBeEncrypted). Each SignedMessage shall contain a single

ToBeSignedEncCert, as follows:

struct {

 uint32 i;

 uint32 j;

 Time32 expiration;

 CertificateDuration lifetime;

 EncryptedMessage enc_cert;

} ToBeSignedEncCert;

The field enc_cert shall have been encrypted with the ECIES encryption key derived from

the seed encryption key H and the expansion function f(i, j).

For short-term certificates, time periods (i, j) are applied as defined in Section 3.1.1

Generation of a message certificate identifier with time period (0, 0) describing the time

period starting January 1st, 2011, 00:00:00, UTC.

For fall-back certificates, time periods (i, j=0) are applied with j always set to 0 and i ≥ 231,

and (231, 0) describing the time period starting January 1st, 2011, 00:00:00, UTC.

When enc_cert is decrypted it shall contain a ToBeEncrypted with type

certificate_and_private_key_reconstruction_value and contents

CertificateAndPrivKeyReconstructionValue, as below:

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 33

struct {

 Certificate cert;

 uint8 s[32];

} CertificateAndPrivKeyReconstructionValue;

The fields here have the following properties:

 the s field shall contain the private key reconstruction value, calculated as described

in Section 8.5 Request Certificates.

 the cert field shall contain the Certificate for a given time period and contains the

following fields:

o the certificate_version_and_type field shall be equal to the integer 3.

o the unsigned_certificate.subject_type field shall contain the type

message_anonymous.

o the unsigned_certificate.cf field shall have the flags use_start_validity and

lifetime_is_duration set and the flag encryption_key not set.

o the unsigned_certificate.scope field shall be an AnonymousScope. In this

field:

 additional_data shall contain an AnonymousRevocationInformation

structure.

 permissions shall contain a single PSID with a null SSP encoding the

permissions for the cert

 region shall be of type NONE.

o unsigned_certificate.expiration field shall contain the time at which validity

period ends for the certificate.

o the unsigned_certificate.lifetime field shall contain the duration of a single

certificate (encoded value for 5 minutes 30 seconds).

o the unsigned_certificate.crl_series field shall be the CRL series. For the

current design this field shall always have the value 1.

o the unsigned_certificate.signer_id field shall contain the low-order eight bytes

of the hash of the CA certificate.

o the reconstruction_value field shall be the reconstruction value C = Bn + c*G

calculated by the CA as described in Section 8.5 Request Certificates. This

shall be an ECPublicKey with algorithm ECDSA-256, given in compressed

form.

struct {

 int32 i;

 int32 j;

 opaque cert_id[8];

} AnonymousRevocationInformation;

The fields here have the following properties:

 i and j are used to calculate the cert_id from the seed

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 34

 cert_id is the cert ID calculated by the CA by XORing the two linkage values

struct {

 SignedMessage sig_enc_cert<var>;

} UnencryptedCertificateBlock;

The type UnencryptedCertificateBlock contains an unencrypted block of certificates, for

example a set of fallback certificates. (Note that although the block is unencrypted, the

individual certificates within the block are encrypted individually). The fields in the

UnencryptedCertificateBlock have the following meanings.

 the sig_enc_cert field shall contain the array of individually encrypted certificates.
4

These are SignedMessages of (external) type sig_enc_cert.

NOTE: The LCM shall keep a list of all response_encryption_keys sent in the order in which

they were sent. A response is considered “correct” if it decrypts correctly and the signature on

the message inside the response verifies. If the LCM receives a correct response using a

given response_encryption_key it shall discard any future messages encrypted with that

response_encryption_key, to prevent replay attacks.

5.3.6 RA → LCM (Status Confirm, failure)

In the case of a failure, or certificates not ready yet, the RA shall send the LCM a Certificate

Request Error using the ToBeEncryptedCertificateRequestError as described in 1609.2 clause

5.3.37.

In the ToBeEncryptedCertificateRequestError, request_hash is the low-order ten bytes of the

SHA-256 hash of the encoded ToBeSignedAnonymousCertRequestReq message contained

in the request from the LCM to the RA.

The ToBeEncryptedCertificateRequestError shall be signed with the RA’s signing keypair

and encapsulated in a ToBeEncrypted of type certificate_request_error. This is then encrypted

with the response_encryption_key from the corresponding status request.

The resulting ciphertext is then encapsulated in a SymmetricEncryptedMessage as described

in Section 5.3.5 RA → LCM (Status Confirm, success), and this in turn is encapsulated in a

1609Dot2Message of type symmetric_encrypted.

4 This field doesn’t include start time, overlap, etc, as these are available within the

individual SignedMessages.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 35

The LCM shall verify the signature before taking action based on the error message. If the

signature verifies, the LCM shall take the following action.

If the CertificateRequestError code is:

 csr_cert_verification_failure(0), the LCM shall regenerate and resend the status

request

 csr_cert_revoked(2), the LCM shall log the error and stop requesting certs

 certificate_response_not_ready (7), the LCM shall regenerate and resend the status

request after a configurable timeout period.

 (16), the LCM shall regenerate and resend the status request with the proper

signature.

 invalid_request_hash(17), the LCM shall regenerate and resend the status request

with the proper request hash.

 invalid_response_encryption_key (18), the LCM shall regenerate and resend the

certificate request with a valid response encryption key.

 invalid_status(19), the LCM shall regenerate and resend the status request with the

proper status.

 invalid_algorithm (20), the LCM shall regenerate and resend the status request with

the proper algorithm.

 current_time_in_past(21) or current_time_in_future(22), the LCM shall regenerate

and resend the status request with the proper current time.

NOTE: The LCM shall keep a list of all response_encryption_keys sent in the order in which

they were sent. A response is considered “correct” if it decrypts correctly and the signature on

the message inside the response verifies. If the LCM receives a correct response using a

given response_encryption_key it shall discard any future messages encrypted with that

response_encryption_key, to prevent replay attacks.

5.3.7 LCM → RA (Acknowledgement)

struct {

 opaque request_hash[10];

 opaque response_hash[10];

} ToBeSignedAnonymousCertResponseAck;

This type is used by the LCM to report to the RA the result of its processing of the certificate

response. It shall be signed with the LCM’s CSR cert, then encoded in a ToBeEncrypted of

type anonymous_cert_response_ack, then encrypted with the RA’s public encryption key,

then encapsulated in a 1609Dot2Message of type encrypted.

 request_hash is the low-order ten bytes of the SHA-256 hash of the encoded

ToBeSignedAnonymousCertRequestReq message contained in the request from the

LCM to the RA

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 36

 The response_hash field is the low-order ten bytes of the hash of the encoded

AnonymousCertRequestStatusCfm message contained in the response from the RA

to the LCM.

If the RA receives an acknowledgement with an incorrect request_hash or response_hash

value, or if the RA does not receive an acknowledgement, it shall log the error. This

document does not define a mechanism for recovering from this error state.

5.4 Request Decryption Keys

5.4.1 Overview

 The LCM:

o Generates a response_encryption_key, which is an AES-CCM key.

o Generates a ToBeSignedAnonymousCertDecryptionKeyReq containing

the information about the response encryption key and the cert batch for

which it is requesting the decryption key.

o Signs the ToBeSignedAnonymousCertDecryptionKeyReq with its CSR

cert.

o Encapsulates that in a ToBeEncrypted of type

anonymous_cert_decryption_key_req.

o Encrypts that with the RA’s public encryption key.

o Encapsulates that in an EncryptedMessage.

o Encapsulates that in a 1609Dot2Message of type encrypted.

o Sends that to the RA.

 The RA:

o Extracts the EncryptedMessage

o Decrypts the EncryptedMessage to recover the encapsulated

SignedMessage

o Verifies the SignedMessage (including checking that the CSR cert has not

expired or been revoked)

o Extracts the ToBeSignedAnonymousCertDecryptionKeyReq

o Checks that the cert_batch_id corresponds to a cert batch that was issued

to the requesting LCM (which is identified by its CSR cert).

o If all of the above operations succeed, the RA:

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 37

 Looks up the decryption key

 Forms an AnonymousCertDecryptionKeyCfm

 Encapsulates that in a ToBeEncrypted of type

anonymous_cert_decryption_key_cfm.

 Encrypts that with the response_encryption_key from the

ToBeSignedAnonymousCertDecryptionKeyReq and forms a

SymmetricEncryptedMessage containing the ciphertext, algorithm

and key_id

 Encapsulates that in a 1609Dot2Message of type

symmetric_encrypted.

 Sends to the LCM.

o If any of the above operations fail:

 Creates and signs a ToBeEncryptedCertificateRequestError as

described in 1609.2 with the appropriate error code (see extensions

to CertificateRequestErrorCode above)

 Encrypts it with the response_encryption_key from the status

request to form a SymmetricEncryptedMessage

 Encapsulates the SymmetricEncryptedMessage in a

1609Dot2Message of type symmetric_encrypted.

 Sends to the LCM.

 The LCM:

o Decrypts the message

o If successful:

 Fills in a ToBeSignedAnonymousCertResponseAck.

 Signs it with the CSR cert

 Encapsulates it in a ToBeEncrypted of type

anonymous_cert_decryption_key_ack.

 Encrypts it with the RA’s public key

 Encapsulates the resulting EncryptedMessage in a

1609Dot2Message of type encrypted.

 Sends to the RA.

o If not successful, regenerates the response_encryption_key, and uses this

as input to recreate and resend the request.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 38

5.4.2 LCM → RA (Request)

struct {

 Time32 current_time;

 CertificateProcessingStatus status;

 SymmAlgorithm alg;

 uint8 response_encryption_key[16];

 uint8 cert_batch_id[8];

} ToBeSignedAnonymousCertDecryptionKeyReq;

This type is used to allow the sender to request the decryption key for an anonymous

certificate batch. It shall be encapsulated within a 1609Dot2Message of type encrypted. The

EncryptedMessage within the 1609Dot2Message shall be encrypted with the public key of

the RA. When decrypted, the EncryptedMessage shall contain a ToBeEncrypted with type

anonymous_cert_decryption_key_req and contents equal to a message of type

AnonymousCertDecryptionKeyReq.

In this type:

 signer.type shall be certificate and signer.certificate shall be the CSR cert that the

requester obtained on bootstrap.

 current_time is the time the status request was generated.

 status is the LCM’s understanding of the status. It shall be:

o first_request if this is the first status request with a given cert_batch_id value;

o timeout if the LCM did not receive a response within the configurable

timeout time to the last status request with this cert_batch_id value;

o err_decrypt if the LCM got an error decrypting the response to the last status

request with this cert_batch_id value or did not recognize the key_id in the

SymmetricEncryptedMessage containing the response.

 alg shall identify the key used to encrypt the response. For this design it shall always

be aes_128_ccm.

 response_encryption_key shall contain the AES key that shall be used to encrypt the

response. This shall be different for every AnonymousCertDecryptionKeyReq from a

given sender.

 cert_batch_id shall contain the relevant cert_batch_id value from the certificate

response for which the LCM is requesting a certificate.

 signature shall be the signature, calculated over the encoding of handle,

response_encryption_key and cert_batch_id, using the private key corresponding to

the public verification key in signer.certificate.

5.4.3 RA → LCM (Confirm, success)

struct {

 uint8 cert_batch_id[8];

 SymmAlgorithm alg;

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 39

 uint8 decryption_key[16];

} AnonymousCertDecryptionKeyCfm;

The type AnonymousCertDecryptionKeyCfm is used by the RA to return the decryption key

for an anonymous certificate Batch.

The resulting ciphertext is then encapsulated in a SymmetricEncryptedMessage as described

in Section 5.3.5 RA → LCM (Status Confirm, success), and this in turn is encapsulated in a

1609Dot2Message of type symmetric_encrypted.

When decrypted, the ciphertext of SymmetricEncryptedMessage shall contain a

ToBeEncrypted with type anonymous_cert_decryption_key_cfm and contents consisting of a

AnonymousCertDecryptionKeyCfm. This shall have fields set as follows:

 cert_batch_id is the relevant cert batch ID.

 alg is the symmetric algorithm, which shall always be aes_128_ccm.

 decryption_key is the decryption key for the algorithm identified in alg.

If a requester fails to receive an encrypted AnonymousCertDecryptionKeyCfm in a timely

manner after sending an AnonymousCertDecryptionKeyReq, it shall regenerate and resend

the AnonymousCertDecryptionKeyReq. The RA shall respond to a given

AnonymousCertDecryptionKeyReq, sending the same AnonymousCertDecryptionKeyCfm

every time.

5.4.4 RA → LCM (Confirm, failure)

 struct {

 SignerIdentifier signer;

 opaque cert_batch_id[8];

 CertificateRequestErrorCode reason;

 Signature signature;

 } ToBeEncryptedDecryptionKeyRequestError;

In the case of a failure the RA shall send the LCM an error message using the

ToBeEncryptedDecryptionKeyRequestError structure. Here:

 signer.type shall be certificate and signer.certificate shall be the RA’s certificate.

 cert_batch_id is the relevant cert batch ID.

 reason is the reason.

The ToBeEncryptedDecryptionKeyRequestError shall be signed with the RA’s signing

keypair and encapsulated in a ToBeEncrypted of type

anonymous_cert_decryption_key_error. This is then encrypted with the

response_encryption_key from the corresponding decryption key request.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 40

The resulting ciphertext is then encapsulated in a SymmetricEncryptedMessage as described

in Section 5.3.5 RA → LCM (Status Confirm, success), and this in turn is encapsulated in a

1609Dot2Message of type symmetric_encrypted.

The LCM shall verify the signature before taking action based on the error message. If the

signature verifies, the LCM shall take the following action.

If the CertificateRequestError code is:

 csr_cert_verification_failure(0), the LCM shall regenerate and resend the decryption

key request

 csr_cert_expired(1), csr_cert_revoked(2), csr_cert_unauthorized(3),

request_denied(4), csr_cert_unknown (5), or canonical_identity_unknown (6), the

LCM shall log the error and stop requesting certs.

 The values certificate_response_not_ready (7), cert_set_start_time_in_past (8),

cert_set_start_time_too_far_in_future (9),

cert_set_end_time_too_close_to_start_time (10),

cert_set_end_time_too_far_from_start_time (11),

requested_smaller_than_minimum_batch_duration (12), or

requested_larger_than_maximum_batch_duration (13), are not valid in this case. If

the LCM receives one of these values it shall log an error and resend the decryption

key request. If, on continuing to resend, the LCM continues to receive one of these

invalid values, it shall after a configurable number of times regenerate and resend the

certificate request.

 The values requested_past_decryption_keys (14),

requested_far_future_decryption_keys (15) the LCM shall log the message and go

into an error state.

5.4.5 LCM → RA (Acknowledgement)

struct {

 uint8 cert_batch_id[8];

 uint8 decryption_key[16];

} ToBeSignedAnonymousCertDecryptionKeyAck;

The LCM shall send the RA an acknowledgement to confirm receipt using the

ToBeSignedAnonymousCertDecryptionKeyAck type. It shall be signed with the LCM’s CSR

cert and placed in a SignedMessage, then encoded in a ToBeEncrypted of type

anonymous_cert_decryption_key_ack, then encrypted with the RA’s public encryption key,

then encapsulated in a 1609Dot2Message of type encrypted. The fields have the identical

values to the values in the corresponding AnonymousCertDecryptionKeyCfm.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 41

If the RA receives an acknowledgement with an incorrect cert_batch_id or decryption_key

value, or if the RA does not receive an acknowledgement, it shall log the error. This

document does not define a mechanism for recovering from this error state.

5.5 Report Misbehavior

5.5.1 Overview

 The application submits a report to the LCM over an API to be determined.

 Upon receipt of a report from the application, the LCM :

o Generates a response_encryption_key, which is an AES-CCM key.

o Generates a ToBeSignedMisbehaviorReportReq containing the

information about the response encryption key and the actual misbehavior

report.

o Signs it with its current anonymous certificate to generate a

SignedMessage of (external) type misbehavior_report_req.

o Encapsulates that in a ToBeEncrypted of (explicit) type

misbehavior_report_req.

o Encrypts that with the CA’s public encryption key.

o Encapsulates that in an EncryptedMessage.

o Encapsulates that in a 1609Dot2Message of type encrypted.

o LCM buffers 1609Dot2Messages and sends theseto the RA once a

connection is available. 1609DotMessages are sent highest priority first,

and within the highest priority newest report first.

 The RA:

o Forwards message to CA.

 The CA:

o Extracts the EncryptedMessage

o Decrypts the EncryptedMessage to recover the encapsulated

SignedMessage.

o Sends a MisbehaviorReportAck, encrypted with the

response_encryption_key from the ToBeSignedMisbehaviorReportReq.

o Verifies the SignedMessage and checks that the anonymous certificate has

not been revoked (it may have been expired though).

o Extracts the ToBeSignedMisbehaviorReportReq.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 42

o Analyzes the actual misbehavior report (or provides the report to a

misbehavior report agent for analysis). Depending on the contents, the CA

may choose to reject or accept a misbehavior report from a revoked unit.

o In case of detected misbehavior, collaborates with RA(s) and LAs to

identify misbehaving entity. RA and CA update their CRLs.

 The RA:

o Forwards message to LCM.

 The LCM:

o Extracts the EncryptedMessage

o Decrypts the EncryptedMessage with response_encryption_key to recover

the encapsulated SignedMessage.

o Verifies the SignedMessage with CA’s certificate and extracts the

ToBeSignedMisbaviorReportAck.

o Validates the MisbehaviorReportAck and, if successful, deletes the

1609Dot2Message.

5.5.2 LCM → RA (Report)

struct {

 opaque misbehavior_report<var>;

 SymmAlgorithm alg;

 uint8 response_encryption_key[16];

} ToBeSignedMisbehaviorReportReq;

This type is used to allow the sender to send a misbehavior report. It shall be signed with the

anonymous certificate (short-term certificate if available, otherwise fall-back certificate)

being valid at the time the LCM receives the misbehavior report, to create a SignedMessage

of (external) type misbehavior_report_req. This shall be included within a ToBeEncrypted of

(explicit) type misbehavior_report_req. This shall be encrypted with CA’s public encryption

key, obtained from the CA’s certificate, to produce an EncryptedMessage. This in turn shall

be encapsulated within a 1609Dot2Message of type encrypted.

In the SignedMessage:

 the signer.type field shall be certificate and signer.certificate shall be the anonymous

certificate being valid at the time the LCM receives the misbehavior report.

 the signature field shall be the signature, calculated over the encoding of tbsmrr, using

the private key corresponding to the public verification key in signer.certificate.

In the ToBeSignedMisbehaviorReportReq:

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 43

 The misbehavior_report field shall contain the misbehavior report. In this version of

the specification, this will be the byte array representing one or more

VSC3MisbehaviorReport messages (defined below). In other words, the

misbehavior_report field contains one or more concatenated

VSC3MisbehaviorReport messages.

 alg shall be aes_128_ccm.

 The response_encryption_key field shall contain the AES-CCM key to be used to

encrypt the response. The LCM shall generate a fresh response encryption key every

time and it shall not reuse response encryption keys.

enum {

casual_report(0),

alert_related_report(1),

suspicious_message(2),

… (255)

} MisbehaviorReportCategory;

struct {

 uint8 version;

 ThreeDLocation observation_location;

 Time64WithConfidence observation_time;

 MisbehaviorReportCategory misbehavior_report_category;

 1609Dot2Message misbehavior_report_entries<var>;

} VSC3MisbehaviorReport;

In the VSC3MisbehaviorReport

 the version field shall contain a version determining the format of the misbehavior

report. In this version of the specification, the version field shall be 1.

 the observation_location field shall describe the location of the reporter at the time of

observation.

 the observation_time field shall describe the time of the reporter at the time of

observation.

 the misbehavior_report_category field shall contain the category of the reported

misbehavior, with possible categories defined in MisbehaviorReportCategory.

 the misbehavior_report_entries field shall contain one or more 1609DotMessages that

are reported.

5.5.3 RA → LCM (Acknowledgement)

struct {

 opaque request_hash[10];

} ToBeSignedMisbehaviorReportAck;

This type is used by the CA to acknowledge receipt of the misbehavior report. It shall be

signed with the CA’s certificate, then encoded in a ToBeEncrypted of type

misbehavior_report_ack, and then encrypted with the response_encryption_key from the

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 44

ToBeSignedMisbehaviorReportReq to form a SymmetricEnryptedMessage. This in turn

is encapsulated in a 1609Dot2Message of type symmetric_encrypted.

 the request_hash field shall be the low-order ten bytes of the SHA-256 hash of the

encoded ToBeSignedMisbehaviorReportReq message contained in the report

from LCM to RA.

If the CA is not able to decrypt EncryptedMessage or verify SignedMessage, CA will not

return an Acknowledgement nor error message.

If the LCM does not receive a ToBeSignedMisbehaviorReportAck within a configurable

timeout, of if the LCM receives an incorrect request_hash, it shall resend the report.

If the LCM receives an incorrect request_hash, an invalid response, or no response three

times, it shall stop sending the report.

5.6 Request CRL

5.6.1 Overview

 The LCM:

o Generates a response_encryption_key, which is an AES-CCM key.

o Generates a ToBeSignedCrlReq containing the type of request (Delta CRL

or whole CRL) and, if required, the requested Delta CRL.

o Signs it with its current anonymous certificate to generate a

SignedMessage of (external) type crl_req.

o Encapsulates that in a ToBeEncrypted of (explicit) type crl_req.

o Encrypts that with the RA’s public encryption key.

o Encapsulates that in an EncryptedMessage.

o Encapsulates that in a 1609Dot2Message of type encrypted.

o Sends that to the RA.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 45

 The RA:

o Extracts the EncryptedMessage

o Decrypts the EncryptedMessage to recover the encapsulated

SignedMessage.

o Verifies the SignedMessage and checks that the anonymous certificate has

not been revoked.

o Extracts the ToBeSignedCrlReq.

o Validates the request.

 If the request is invalid, creates a ToBeEncryptedCrlRequestError,

signs that and encapsulates in a ToBeEncrypted. Then encrypts

with the response_encryption_key from ToBeSignedCrlReq.

 If the request is valid:

 Locates the requested (delta or whole) Crl.

 Encapsulates Crl in a ToBeEncrypted of type crl.

 Encrypts with the response_encryption_key from the

ToBeSignedCrlReq to form a SymmetricEncryptedMessage.

 Encapsulates that in a 1609Dot2Message of type

symmetric_encrypted.

 The LCM:

o Extracts the SymmetricEncryptedMessage

o Decrypts the SymmetricEncryptedMessage

o In case of an error, handles the error.

o Otherwise recovers the encapsulated Crl and processes the Crl.

5.6.3 LCM → RA (Request)

struct {

 CrlSeries crl_series;

 CertId8 ca_id;

 uint32 crl_serial;

SymmAlgorithm alg;

 uint8 response_encryption_key[16];

} ToBeSignedCrlReq;

This type is used to allow the sender to request a CRL. It shall be signed with the current

non-expired anonymous certificate to create a SignedMessage of (external) type crl_req. This

shall be included within a ToBeEncrypted of (explicit) type crl_req. This shall be encrypted

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 46

with RA’s public encryption key, obtained from RA’s certificate, to produce an

EncryptedMessage. This in turn shall be encapsulated within a 1609Dot2Message of type

encrypted.

In the SignedMessage:

 the signer.type field shall be certificate and signer.certificate shall be the currently

valid non-expired anonymous certificate.

 The signature field shall be the signature, calculated over the encoding of tbscr using

the private key corresponding to the public verification key in signer.certificate.

In the ToBeSignedCrlReq:

 the crl_series field shall be the CRL series. In this specification, crl_series shall be 1.

 the ca_id field shall contain the CertId8 of the CA issuing the CRL, in this case the

CAMP CA.

 the crl_serial field shall be set as follows:

o if the whole CRL is requested, the field shall be set to 0xFF FF FF FF. Note:

the whole CRL only includes entries that are not expired.

o if the most recent delta CRL is requested without knowing the actual

sequence number, the field shall be set to 0x7F FF FF FE.

o If a specific delta CRL is requested, the field shall be set to the corresponding

serial number. Allowed serial numbers are 0 to 0x7F FF FF 00.

 alg shall be aes_128_ccm.

 The response_encryption_key field shall contain the AES-CCM key to be used to

encrypt the response. The LCM shall generate a fresh response encryption key every

time and it shall not reuse response encryption keys

5.6.3 RA → LCM (Confirmation, success)

struct {

 CrlType type;

 CrlSeries crl_series;

 CertId8 ca_id;

 uint32 crl_serial;

 Time32 start_period;

 Time32 issue_date;

 Time32 next_crl;

 Select (type) {

 case (id_only):

 CertID10 entries<var>;

 case (id_and_expiry):

 IdAndDate expiring_entries<var>;

// begin new material

 case (anonymous_entry):

 AnonymousEntry anonymous_crl_entries<var>;

// end new material

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 47

 Unknown:

 Opaque other_entries<var>;

 }

} ToBeSignedCrl;

A modified IEEE 1609.2/D9 structure ToBeSignedCRL of type anonymous_entry shall be

used:

 type shall be anonymous_entry

 crl_series shall be the CRL series for which the CRL is used. In this specification,

crl_series shall be 1.

 crl_serial shall be a counter that shall increment by 1 for every issued CRL by CA.

For Delta CRLs, allowed crl_serial values are 0 to 0x7F FF FF 00. For full CRLs,

allowed crl_serial values are 0x80 00 00 00 to 0xFF FF FF 00. There is a one-to-one

mapping between Delta CRL with crl_serial dsr and Full CRL with crl_serial fsr such

that

o the Full CRL includes all entries of the Delta CRL and all previous Delta

CRLs exclusive expired entries

o fsr = dsr XOR 0x80 00 00 00.

That is, the most significant bit of crl_serial is set to one for a Full CRL and set to

zero for a Delta CRL, and the least significant 63 bits describe a sequential number.

struct {

 uint32 i;

 opaque linkage_value_1[16];

 opaque linkage_value_2[16];

 uint32 max_i;

} AnonymousEntry;

The type AnonymousEntry is used as CRL entry:

 the i field shall describe the time period i for which the linkage values are valid.

 the linkage_value_1 and linkage_value_2 field shall describe the revocation values at

time period i.

 the max_i field shall describe the time period max_i until the CRL entry is valid.

CA issues a CRL by encapsulating ToBeSignedCrl in a Crl (including CA’s signature).

RA shall encapsulate Crl in a ToBeEncrypted of type crl. This is encrypted using

response_encryption_key from ToBeSignedCrlReq to form a SymmetricEncryptedMessage.

This in turn shall be encapsulated in a 1609Dot2Message of type symmetric_encrypted.

5.6.4 RA → LCM (Confirmation, failure)

struct {

 SignerIdentifier signer;

 opaque request_hash[10];

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 48

 CrlRequestErrorCode reason;

 Signature signature;

 } ToBeEncryptedCrlRequestError;

In the case of a failure the RA shall send the LCM an ToBeEncryptedCrlRequestError:

 signer.type shall be certificate and signer.certificate shall be the RA’s certificate.

 request_hash shall be the the low-order ten bytes of the hash of 1609Dot2Message

sent by the LCM.

 reason is the error reason.

The ToBeEncryptedCrlRequestError shall be signed with the RA’s signing key and

encapsulated in a ToBeEncrypted of type crl_req_error. This is then encrypted with the

response_encryption_key from ToBeSignedCrlReq.

The resulting ciphertext is encapsulated in a SymmetricEncryptedMessage, and this in turn is

encapsulated in a 1609Dot2Message of type symmetric_encrypted.

enum { verification_failure(0),

 anonymous_cert_invalid(1),

 anonymous_cert_revoked(2),

 request_denied(3),

 invalid_crl_series(4),

 invalid_crl_serial(5),

 invalid_ca_id(6),

 … (255)

 } CrlRequestErrorCode;

The LCM shall verify the signature before taking action. If the signature verifies, the LCM

shall take the following action.

If the CrlRequestErrorCode is:

 verification_failure(0) - the LCM shall regenerate and resend the request.

 anonymous_cert_invalid(1) – the LCM shall use a valid anonymous certificate to

sign the request.

 anonymous_cert_revoked(2) and request_denied(3) – the LCM shall log the error and

stop requesting CRLs.

 invalid_crl_series(4) – the LCM shall regenerate and resend the request with a proper

crl_series.

 invalid_crl_serial(5) – the LCM shall regenerate and resend the request with a proper

crl_serial.

 invalid_ca_id(6) – the LCM shall regenerate and resend the request with a proper

ca_id.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 49

6. Model OBE Architecture

This section outlines a model architecture of the software running on the OBE, combining

LCM and IEEE 1609.2 stack.

In a reference model, the LCM will have a defined interface which can be called by the

1609.2 stacks (LCM API). This API will provide certificates and singing keys to the 1609.2

implementations.

In turn, the LCM will expect functionality provided by the 1609.2 stacks (the 1609.2 stack

API). These functions include parsing of 1609.2 messages, signing, verification, encryption

and decryption calls. As there is no unified 1609.2 API, each 1609.2 stack needs to

implement an adaptor that ensures the 1609.2 stack API can function correctly. A general

overview is given in Figure 2.

Figure 2: OBE Architecture

OBE

LCM

Adaptor

Type 1

1609.2

stack

Type 2

1609.2

stack

Other

1609.2

stack

Adaptor Adaptor

LCM API

1609.2 stack API

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 50

7. Model LCM Configuration Parameters

The parameters are described in Table 1: LCM configuration parameters. These parameters

describe an exemplary set of configuration parameters.

Table 1: LCM configuration parameters

Sample configuration file:

#* *

#* LCM sample configuration file *

#* *

#***

**/

Configuration Parameter
Default Value Description

USE_ADDRESS Indicates which Address type to use

for CA:

1: Domain Name

3: IPv4

2: IPv6

CA_IP_V4_ADDRESS

CA_IP_V6_ADDRESS XXX.XXX.XXX.XXX IP address of CA

CA_DOMAIN_NAME

CA_TCP_PORT_NUMBER 16092 Port number of CA

PSID ??? PSID for which certificates are

requested

SHORT_TERM_REQNEW 30000 [seconds] (500

minutes)

New certificates can be requested

SHORT_TERM_REQNEW seconds

before expiration of the current batch

SHORT_TERM_REQ_DCRYPTKEY 15000[seconds] (250

minutes)

New decryption key(s) can be

requested

SHORT_TERM_REQ_DCRYPTKEY

seconds before available certificates

expire.

BACKOFTIME 300[seconds] (5

minutes)

Time between status request

messages

NAME XXXX Canonical name of the LCM

STORAGE_SPACE 1024 [kb] Space available for certificate

storage

BATCH_DURATION 2592000 [seconds] (30

days)

Length of a batch of certificates

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 51

Network configuration parameters

RA_ADDRESS = localhost # Servers host name or ip address

#RA_ADDRESS = 192.168.10.112 # Servers host name or ip address

RA_PORT = 1337 # Servers port number

PSID

PSID = 18 # Range: 16-20 decimal

Storage_Space = 20480 # Certificate storage (kb)

#Bootstrap

Bootstrap_Request_Timeout = 30 # Seconds to wait for bootstrap

confirmation before requesting again

Certificate

Batch_Duration_Units = 2 # Values: 0 = seconds, 1 = minutes, 2

= hours, 3= 60-hours, 4 = years

Batch_Duration_Value = 24 # 24 hr

Certificate_Request_Status_Inquiry_Interval = 70 # Minimum delay between

status inquiries, default: 70

Certificate_Request_Confirmation_Timeout = 5 # Seconds to wait for

confirmation before requesting again, default 5 sec

Decryption_Key_Request_Interval = 5 # Minimum delay between

decryption-key requests, default 5 sec

Maximum_Certificate_Storage_Time = 31536000 # 1 yr x 365 days/yr x

24 hr/day x 60 min/hr x 60 sec/min

Request_Certificates_Time = 30000 # 500 min. x 60 sec/min

Request_Decryption_Key_Time = 15000 # 250 min x 60 sec/min

General

LCM_NAME = obe # Name to include in the certificate

request message

Connection_Retry_Interval = 60 # Minimum delay between connection

requests, defaul 60 seconds

Logging options # Values: 0/1 Default: 0

LCMLogEnable = 0 # Enable writting to the log

LogFileDirectory = . # Name of directory for log files

LogUseSimpleName = 0 # Simple name: lcm.log

The following options enable additional debugging information

LogEnableAdditionalInfo = 0 # Include lcm specific log messages

Log_Bootstrap_Request = 0 # Log bootstrap progress

Log_Bootstrap_Confirm = 0

Log_Bootstrap_Ack = 0

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 52

Log_CertRequest_Req = 0 # Log certificate request progress

Log_CertRequest_Confirm = 0

Log_CertStatus_Req = 0

Log_CertStatus_Confirm = 0

Log_CertResponse_Ack = 0

Log_DecryptKey_Request = 0 # Log decryption key progress

Log_DecryptKey_Confirm = 0

Log_DecryptKey_Ack = 0

Log_SignEncrypt_Input = 0 # Log data to be signed

Log_SignEncrypt_Before_Encrypt = 0 # Log data to be encrypted

Log_SignEncrypt_After_Encrypt = 0 # Log encrypted data

Log_Imported_File = 0 # log imported cert files

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 53

8. Security Server Architecture

8.1 Design Premise

The CA’s ability to violate OBE’s privacy is restricted by splitting Security Server roles into

Registration Authorities (RA), Certificate Authorities (CA), and Linkage Authorities (LA).

The minimum instantiation requires one RA, one CA, and two LAs. The minimum

instantiation is implemented in this design but can be extended in future designs. The

objective of the design is that no single authority is able to link certificates of an OBE (that is,

if there are two certificates the likelihood of guessing whether the two certificates belong to

the same OBE must not be larger than ½). For instance, LA1 and LA2 must collaborate to

link certificates.

8.2 Overview

Figure 3 displays an overview of the Security Server design. It is assumed that the authorities

(CA, RA, LA) communicate over secure connections (e.g., SSL protected).

8.3.1 Parser

The parser listens to a single port (TBD) waiting for client connections. Once a client

becomes connected, a new thread is created and data from incoming OTA messages can be

parsed.

8.3.2 RA

RA acts as anonymizer proxy: collect and process OBE requests, shuffle the requests, and

forward individual certificate requests to CA.

RA also adds another layer of encryption: encrypts batches of certificates and provides

decryption key upon request by OBE.

8.3.3 CA

CA issues certificates without knowing which certificate is for which OBE. The CA has a

signature/verification key pair, S_SKCA and S_PKCA respectively, and an

encryption/decryption key pair, E_PKCA and E_SKCA respectively.

8.3.4 LA

The LAs issue the linkage values (that are used as revocation values) and certificate IDs. LA1

and LA2 generate a set of CertIDs that are later combined by the CA.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 54

Figure 3: Security Server Design Overview

CA
RA

LA1 LA2

OBE1

OBE2

OBEn

1. Request certificates:

{Enc
CA(PUB

i , SK
i)}i

Certificate IDs:
EncCA(CertIDLA1)

Certif
icate ID

s:

EncCA(C
ertID

LA2)

2. Request certificate: EncCA(PUBi, SKi)

3. Provide certificate IDs

4. Issue certificates:
EncSKi(<PUBi, CertIDLA1 XOR CertIDLA2>)

6. Provide encrypted certificates:

{Enc
SKi(<PUB

i , CertID>)}i

5. Provide encrypted certificates

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 55

8.3 Bootstrapping

This process must be executed in a secure environment. For the given design, it is assumed

that the process takes place in a secure environment.

OBE RA CA

1. OBE → RA

1.1 Generate seed key for implicit

CSR certificate and pass to RA.

2. RA → CA

 2.1 Forward

CSR request

3. CA → RA

 2.1 Issue CSR certificate and return

together with <PKRA>CA and <PKCA>CA to

OBE.

4. RA → OBE

 4.1 Forward to

OBE

5.OBE → RA

5.1 Acknowledge

OBE RA

1. Request credentials

4. Provide CSR

certificate

5. Acknowledge

CA

2. Forward request

3. Provide CSR certificate

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 56

8.4 Calculation of Linkage Values

LA1 LA2

1. RA → LA1 / LA2

1.1 RA provides a number of OBEs N for which

linkage values should be generated

2. LA1 / LA2 → RA

2.1 Generate values s(w, i, 1) = hash(s(w, i-1, 1))

for OBEs w=1,...,N and i=1, …, n (n=365 to cover

certificates for one year).

2.1 Generate values s(w, i, 2) = hash(s(w, i-1, 2))

for OBEs w and i=1, …, n (n=365 to cover

certificates for one year).

2.2 Calculate CertID(w, i, j, 1) = Encs(j) (with s =

s(w, i, 1) and j=1, …, m) (m=288 to cover

certificates for one day if each certificate is valid

for 5:30 minutes with an overlap of 30 seconds).

Note: w is not part of the calculation but is only

used here to link together CertIDs.

2.2 Calculate CertID(w, i, j, 2) = Encs(j) (with s =

s(w, i, 2) and j=1, …, m) (m=288 to cover

certificates for one day if each certificate is valid

for 5:30 minutes with an overlap of 30 seconds).

Note: w is not part of the calculation but is only

used here to link together CertIDs.

2.3 Generate a set of fall-back certificates with

j=1 and i being worth XXX years.

2.3 Generate a set of fall-back certificates with

j=1 and i being worth XXX years.

2.4 Encrypt all values with E_PKCA and sign the

encrypted values.

2.4 Encrypt all values with E_PKCA and sign the

encrypted values.

2.5 Send the RA the tuples { EncCA(CertID(w, i, j,

1)), SigLA1(EncCA(CertID(w, i, j, 1))), w, i, j }for

each w, i, j.

2.5 Send the RA the tuples { EncCA(CertID(w, i, j,

2)), SigLA2(EncCA(CertID(w, i, j, 2))), w, i, j }for

each w, i, j.

2.5 Store tuples (EncCA(CertID(w, i, j, 1)), s(w, i,

1)).

2.5 Store tuples (EncCA(CertID(w, i, j, 2)), s(w, i,

2)).

3. RA → LA1 / LA2

3.1 RA acknowledges receipt.

LA1 RA

2. CertIDs

LA2

2. CertIDs

1. N 1. N

3. Acknowledge 3. Acknowledge

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 57

8.5 Request Certificates

OBE RA CA

1. OBE → RA

1.1 Generate ECC signing keypair

a, A= aG, and h, H=hG.

Randomly select values s and e

(each 16 bytes).

Collect current time t, start_time

and end_time of short-term

certificates, and (optionally)

start_time_fallback and

end_time_fallback of fall-back

certificate, and certificate <

R_PKOBE >RA. Sign [A, H, s, e, t,

start_time, end_time,

1.2 Decrypt all values and verify the
signature with R_PKOBE. Check
freshnessand validate R_PKOBE
against internal CRL.

OBE RA CA

1. Request certificate set

3. Request certificate

4. Provide encrypted certificate

6. Provide encrypted certificate set

7. Acknowledge

2.Acknowledge

5. Request response

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 58

start_time_fallback,

end_time_fallback, < R_PKOBE

>RA] with R_SKOBE and encrypt

the signed message with PKRA.

Note: this step is highly flexible.

Instead of start_time and

end_time, the number of

requested certificates might be

included. Also PSID, geographic

location scope, etc. might be

included.

 1.3 Decrypt message. Check

signature.

Store request as tuples (R_PKOBE,

start_time, end_time, certificate_type

= short-term cert, decrypted_flag =

false) and (R_PKOBE,

start_time_fallback,

end_time_fallback, certificate_type =

fall-back cert, decrypted_flag = true).

Validate that OBE did not apply for

certificates covering this time period

before.

Note: if more than one RA is used,

the later list shall be shared by all

RAs.

2. RA → OBE

 2.1 Acknowledge submission

3. RA → CA

 3.1 Assign an unused value w to the

OBE. Request from LA1 the values

EncCA(CertID(w, i, j, 1)) and request

EncCA(CertID(w, i, j, 2)) from LA2 for

each (i, j) (if RA requested a bundle

from the LAs before, lookup values).

Define the function f(k, i, j) as follows:

a. Set I = J*i+j.
Set J := 2

32

b. Convert the integer I to an
octet string by encoding I as
an unsigned integer
encoded in network byte
order

3.2 The CA decrypts all

values and verifies all

signatures.

The CA checks for each

(encrypted) CertID

(EncCA(CertID(w, i, j, 1))

and EncCA(CertID(w, i, j,

2)) that they were not

used before. If they were

used before, the CA

rejects the request.

The CA sets the contents

of the cert to <CertID(w,

i, j), start_timen,

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 59

c. Set f equal to the octet string
AESk(0^128 XOR I) ||
AESk(1^128 XOR I)

d. Convert f to an integer
assuming it was encoded in
network byte order

e. Reduce f modulo the order
of the base point G.

f. Output f.
Note: due to the modulo

operation, the output of f is

slightly biased but impact is

negligible.

Then for each (i, j) (e.g. i=0, …, 364,

j=0, …, 287 for one year) calculate

and temporarily store

 n = i*max(j) + j

 Bn = A + f(s, i, j) * G

 Ln = H + f(e, i, j) * G

 start_timen = start_time +
n*cert_validity (for both short-
term and fall-back certificates)

 end_timen = start_time_n +
cert_validity (for both short-term
and fall-back certificates)

 RA stores the tuple (R_PKOBE, w,
i, j, start_timen, end_timen,
EncCA(CertID(w, i, j, 1)),
EncCA(CertID(w, i, j, 2))).

Generate such values from a

sufficient number of OBEs.

Randomly select w, i, and j, and pass

[Bn, Ln, start_timen, end_timen,

EncCA(CertID(w, i, j, 1)),

EncCA(CertID(w, i, j, 2))] to CA.

Further information, including PSID,

geographic location scope, etc.

might be included.

Note: the RA acts as an anonymity

proxy. The RA must randomly pass

individual requests to the CA not

pass requests in bulk.

end_timen>, the

appropriate PSIDs, and

further data (if any).

The CA randomly

chooses a value c mod

the order of G. The CA

then calculates

 CertID(w, i, j) =
CertID(w, i, j, 1) XOR
CertID(w, i, j, 2)

 C = Bn + c*G

 s = SHA-
256(contents of cert,
C) *c + S_SKCA

Finally, the CA ECIES

encrypts the certificate

and private key

reconstruction value s

using OBE’s public key

Ln as EncLn(Cert

contents, C, s) and signs

this value as SigCA(Enc Ln

(Cert contents, C, s)).

CA passes SigEncCertn

:= [EncLn(Cert contents,

C, s), SigCA(Enc Ln (Cert

contents, C, s)),

start_timen, end_timen] to

RA.

The CA stores the tuple

(CertID(w, i, j),

start_timen, end_timen,

EncCA(CertID(w, i, j, 1)),

EncCA(CertID(w, i, j, 2))).

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 60

4. CA → RA

 4.1 RA collects all responses

SigEncCertn for all n.

The RA then generates batch

identifiers CertBatchIDu, randomly

generates an encryption key ku for

each CertBatchIDu, divides all

encrypted certificates in batches

where a batch has start_timeu

(start_time of the first certificate) and

end_timeu (end_time of the last

certificate) and encrypts these as

EncBatchu := {Encku({n, SigEncCertn

}n)}u (e.g., there could be 12 batches

each worth 30 days of certificates,

i.e. u=1…12, n=1…30*288).

The RA stores the tuples

{(CertBatchIDu, ku, start_timeu,

end_timeu)}u for all u.

5. OBE → RA

5.1 Request response

6. RA → OBE

 6.1 The RA passes the set of

{CertBatchIDu, start_timeu,

end_timeu, EncBatchu}u for all u (e.g.

u=1…12) to OBE.

RA stores all values.

7. OBE → RA

7.1 OBE sends Acknowledge to

RA.

7.2 RA deletes data that is not

needed anymore.

Note that the values of the requested certificates such as psid and geographic scope need to

be checked for consistency and passed to the CA.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 61

8.6 Request Decryption Key

OBE RA

1. OBE → RA

1.1 Select response encryption key sk, sign sk and

CertBlockIDu and certificate < R_PKOBE >RA with

R_SKRA, and encrypt the signed message with

R_SKOBE.

1.2 Decrypt, verify signature, and validate

against internal CRL.

2. RA → OBE

 2.1 Lookup the tuple (CertBlockIDu, ku,

start_timeu, end_timeu), check that current time

fits to start_timeu and end_timeu, and encrypt

Encsk(ku).

Update table of provided certificates with tuple

(R_PKOBE, start_timeu, end_timeu,

certificate_type ={short-term cert, fall-back cert},

decrypted_flag = true).

Provide Encsk(ku) to OBE.

2.2 Decrypt ku and decrypt key block to recover

values {n, SigEncCertn }n (for all values n of a

block).

Upon request, identify the proper value (n,

SigEncCertn) (e.g. based on start_timen and

end_timen). Work out the appropriate range of i and

j. Calculate

OBE RA

1. Request decryption key

2. Provide decryption key

3. Acknowledge

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 62

 ECDSA verify SigCA(Enc Ln (Cert, c)) (using
CA’s public key)

 ln = h + f(e, i, j) (private encryption key)

 ECIES decrypt EncLn(Cert Contents, C, s)
using ln to recover the plaintext.

 cn = SHA-256(Cert Contents, C) * (a + f(s, i, j))
+ s

 Check that cn*G = hash (Cert Contents, C) * C
+ S_PKCA.

cn is the private key of Cert.

3. OBE → RA

3.1 OBE sends Acknowledgement

8.7 Misbehavior Report and Revocation

OBE RA CA LA1 LA2

1. OBE → CA

1.1 Assemble

misbehavior

report, sign with a

message

certificate Cert

OBE RA CA

1. Misbehavior Report

2. Lookup CertID

LA1 LA2

3. Lookup Linkage Value

5. Add to CRL

4. Return Linkage Value

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 63

(with private key

cn), attach

message

certificate Cert,

and encrypt with

E_PKCA.

 1.3 Decrypt misbehavior

report with SKCA and

verify signature with

public key Cn recovered

of Cert.

Check if Cert is revoked

(using public CRL).

 1.4 Analyze misbehavior

report. Identify certificate

mis_cert of misbehaving

vehicle (if any; mis_cert

might be Cert of the

reporter), and look-up

tuple (CertID(w, i, j),

start_timen, end_timen,

EncCA(CertID(w, i, j, 1)),

EncCA(CertID(w, i, j, 2))).

2. CA → RA

 2.1 CA passes

EncCA(CertID(w, i, j, 1))

and EncCA(CertID(w, i, j,

2)) to RA.

 2.2 RA searches for tuple

(R_PKOBE, w, i, j, start_timen,

end_timen, EncCA(CertID(w, i, j,

1)), EncCA(CertID(w, i, j, 2))).

If the found tuple points to a

fall-back certificate, RA then

searches the tuple for the

current time that points to the

short-term certificate (using

search keys R_PKOBE and w).

Otherwise, RA searches the

tuple for the current time that

points to the fall-back

certificate. Let the tuple be

(R_PKOBE, w, i’, j’, start_timen’,

end_timen’, EncCA(CertID’(w, i’,

j’, 1)), EncCA(CertID’(w, i’, j’,

2))).

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 64

RA adds R_PKOBE to internal

CRL.

RA then passes

EncCA(CertID(w, i, j, 1)) and

EncCA(CertID’(w, i’, j’, 1)) to

LA1, and EncCA(CertID(w, i, j,

2)) and EncCA(CertID’(w, i’, j’,

2)) to LA2.

3. RA → LA1, LA2

 3.1 LA1

looks up

s(w, i, j,

1) and

s’(w, i',

j’, 1),

and

sends

to RA.

3.2 LA2

looks up

s(w, i, j,

2) and

s’(w, i',

j’, 2),

and

sends

to RA.

4. LA1, LA2 → RA

 4.1 RA determines the validity

period of certificates that are

accessible by misbehaving

OBE by looking up tuples with

decrypted_flag = true, both for

fall-back and short-term

certificates: (R_PKOBE,

start_time, end_time,

certificate_type ={short-term

cert, fall-back cert},

decrypted_flag = true).

Suppose the determined times

furthest in the future are

end_times (for short-term

certificate) and end_timef (for

fall-back certificate). That is, the

value end_times describes the

time until the OBE was issued

regular message certificates

(until which decryption keys

were provided), and end_timef

describes the time until fall-

back certificates were issued.

RA deletes all data about

R_PKOBE and forwards results

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 65

to CA.

5. RA → CA

 3.1 CA adds [(s(w, i, j, 1),

s(w, i, j, 2), end_times,

s’(w, i’, j’, 1), s’(w, i’, j’, 2),

end_timef] to public CRL.

Note: it is assumed here

that s refers to short-term

certificate and s’ refers to

fall-back certificate.

Implementer must order

appropriately.

The CA then signs the

public CRL.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 66

8.8 Request CRL

OBE RA CA

0. CA → RA

 0.1 provides CRL

whenever

available

1. OBE → RA

1.1 Request CRL

(signed and encrypted)

1. CA → OBE

 2.1 Respond with public

CRL (encrypted)

8.9 Keys

OBE RA CA LA1 / LA2

 Global identity (long-term
certificate) for requests:
R_SKOBE /

< R_PKOBE >CA

 RA encryption
key pair:
SKRA / PKRA

 RA signing key
pair:
S_SKRA /

S_PKRA

 CA key pairs:
E_SKCA / E_PKCA,

S_SKCA / S_PKCA

 LA signing
key pair:
S_SKLA /
S_PKLA

OBE RA CA

1. Request CRL

2. CRL

0. CRL

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 67

8.10 Data Structures

OBE
RA CA LA1 / LA2

 secret values to
expand private keys
and decryption keys:
a, h, s, e

 Time for which an
OBE requested
certificates:
(R_PKOBE,

start_time, end_time,

certificate_type

={short-term cert,

fall-back cert},

decrypted_flag =

{false, true})

 Internal CRL:
List of [R_PKOBE]

 Encrypted (for CA)
CertIDs: (R_PKOBE,
w, i, j, start_timen,
end_timen,
EncCA(CertID(w, i, j,
1)), EncCA(CertID(w,
i, j, 2)))

 Batch encryption
keys: {CertBatchIDu,
ku, start_timeu,
end_timeu} for all u

 Public CRL:
(List of revocation

keys {s(w, i, j, 1),

s(w, i, j, 2)}, SigRA

 Mapping of CertIDs:
(CertID(w, i, j),
start_timen,
end_timen,
EncCA(CertID(w, i, j,
1)), EncCA(CertID(w,
i, j, 2))).

 Database to
map
encrypted
CertIDs to
revocation
keys:
(EncCA(CertI
D(w, i, j,
1/2)), s(w, i,
1/2))

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 68

9. Security Server Communication Socket

The Security Server will listen to a server socket on port GCM_TCP_portNumber. The

messages transmitted over the TCP socket are expected in OTA message format (see Section

5. OTA Message Formats
) without any additional headers.
The details of establishing and closing sockets during the LCM – Server communication are

explained in Appendix C: Connection requirements between LCM and Server.

10. Security Server Configuration

Parameters

Table 2 describes the Security Server configuration parameters.

Table 2: Security Server Configuration Parameters

Configuration Parameter
Default Value Description

GCM_T_shortTerm 330 [sec] Int: Validity of short-term certificates

GCM_T_fallBack 94608030 [sec] (=3

years)

Int: Validity of fall-back certificate

GCM_T_overlap 30 [sec] Int: Overlap of certificates

GCM_T_reload_shortTerm 2592000 [sec] (=30

days)

Int: New short-term certificates can

be requested T_reLoad_shortTerm

seconds before start time of

requested batch.

GCM_T_reload_fallBack 64800000 [sec] (=

750 days)

Int: New fall-back certificates can be

requested T_reLoad_fallBack

seconds before start time of

requested batch.

GCM_TCP_portNumber 1337 Int: TCP port of the Security Server.

GCM_T_request_decryptionKey 1296000 [sec] =(15

days)

Int: The decryption key for the next

batch can be requested

GCM_T_request_decryptionKey

before expiration of the current batch.

GCM_EnableBootstrap NO Possible Values: YES, NO

If set to ‘NO’, the server rejects any

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 69

bootstrap request. If set to ‘YES’, the

server will execute the bootstrap

request.

GCM_StartEndTime_Max 31536000 [sec] (=

365 days)

Int: Maximum value allowed for LCM

certificate request for difference

between end_time and start_time

GCM_StartEndTime_Min 86400 [sec] (= 1 day) Int: Minimum value allowed for LCM

certificate request for difference

between end_time and start_time

GCM_BatchDuration_Max 2592000 [sec] (=30

days)

Int: Maximum value allowed by LCM

certificate request (batch_duration)

GCM_BatchDuration_Min 86400 [sec] (=1 day) Int: Minimum value allowed by LCM

certificate request (batch_duration)

CRL_IssueInterval 86400 [sec] (=1 day) Int: the CA will issue a new CRL

every CRL_IssueInterval seconds

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 70

11. Future Work

This section lists design options that were discussed during the project but left for future

implementations:

 OTA error codes: instead of returning a single error code, a bit-map might be

returned. There might be more than one appropriate error code, and the bit-map is

able to indicate all applicable error codes

 The CA should have a way to communicate parameters such as min / max batch

duration to the LCM

 The system should handle errors that arise during operations rather than during

communications sessions with the CA. For example, when the LCM is decrypting an

individually encrypted cert, any of the following can happen:

o The CA signature on the encrypted cert could fail to verify

o The encryption could fail

o The CA signature check (or private key reconstruction and comparison with

the derived public key, in the case of implicit certs) could fail

We have not yet performed a threat analysis on these cases (for example, if the LCM

notifies the PKI in this case, and the PKI issues a new set of certs, then a corrupt

LCM can use this to get multiple sets of certs). We need to do this to work out the full

process flow and then define messages.

 In Certificate Request, LCM – RA Acknowledgement, the error handling if no ACK

is sent is very complex. It is worth analyzing whether an ACK is necessary at all. In

any case, error handling needs to be carefully analyzed and designed.

 Error handling needs to be improved in implementations. Timeouts shall be defined

in terms of time or repetitions.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 71

12. References

[1] Anonymous, Cooperative Vehicle-To-Vehicle Crash Avoidance Applications Using

5.9 GHz, Dedicated Short Range Communications (DSRC) Wireless

Communications, IP.com, document number IPCOM000210877D, dated

September 14, 2011, www.ip.com

[2] IEEE Computer Society, “IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and

metropolitan area networks — Specific requirements, Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, Amendment 6: Wireless Access in Vehicular Environments,” IEEE

Std 802.11p
TM

-2010.

[3] SAE International TM, “Surface Vehicle Standard – Dedicated Short Range

Communications (DSRC) Message Set Dictionary,” SAE J2735, November 2009.

[4] Intelligent Transportation Systems Committee of the IEEE Society, “Draft

Standard for Wireless Access in Vehicular Environments – Security Services for

Applications and Management Messages,” IEEE P1609.2TM/D9.3, 2011.

[5] DSRC Working Group of the Intelligent Transportation Systems Committee of the

IEEE Society, “Draft Standard for Wireless Access in Vehicular Environments

(WAVE) – Networking Services,” IEEE P1609.3 TM / REVCOM revision - TBD,

August 2010.

[6] DSRC Working Group of the Intelligent Transportation Systems Committee of the

IEEE Society, “Draft Standard for Wireless Access in Vehicular Environments

(WAVE) – Multi-channel Operation,” IEEE P1609.4 TM / REVCOM revision -

TBD, August 2010.

http://www.ip.com/

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 72

Appendix A: Certificate File Format

A.1 Private-Key-Certificate-File-Format

The following file format is designed to be a common format appropriate for the delivery of

encrypted private keys and their associated certificates to various devices , whether short-

lived certificates, long-lived certificates, fallback certificates, or certificates that do not

expire. Besides being a common format, the goal is to provide fast access to a certificate

with a particular start time.

The file contents will be identified by the file name. A concrete example is given in the next

section for Vehicle Awareness Device short-lived certificates.

Different types of certificates for different devices may have different lengths and different

validity periods, and therefore there may be a different number of certificates in a file. To

accommodate these differences, this file format includes global data that defines the number

of private-key-certificate entries in the file, and the time interval between the start times of

successive certificates, which applies to each entry. A certificate that does not expire would

be the only entry in the file, and in that case the time interval would be meaningless. Entries

in the files will be arranged chronologically by the start times of the certificates. If an entry is

missing for a particular starting time, that entry will have 256 arbitrary bytes, except that the

ciphertext length byte will have the value 0.

In addition, each entry contains the length of the ciphertext for that entry, and each entry is

padded so that it is 256 bytes long. Note that the padding may be arbitrary values. The

fixed-length, chronological entries and the time interval between entries give the information

required for fast access to a particular certificate.

Specifically, the file format is:

typedef struct {

 uint8_t fileformat_version; // file format version number

 uint8_t num_entries[4]; // number of private-key-certificate

 entries in the file, big endian

 uint8_t time_interval[4]; // number of seconds between the

 start times of successive

 certificates, big endian

 Entry entry[num_entries]; // padded, encrypted private-key-

 certificate entries

} FileFormat;

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 73

The field fileformat_version contains the current version of the file format. The version

described in this document is version 2, represented by the integer 2. Note

fileformat_version=1 is deprecated.

Each padded, encrypted private-key-certificate entry has the following format:

typedef struct {

 uint8_t nonce[12]; // 12-byte nonce used to

 AES-CCM encrypt this

 entry

 uint8_t ciphertext_length; // number of bytes in

 the ciphertext

 uint8_t ciphertext[ciphertext_length]; // ciphertext

 uint8_t padding[256-12-1-ciphertext_length]; // arbitrary padding

 bytes

} Entry

After AES-CCM decryption (as specified in 1609.2) of the ciphertext in an entry, the

resulting plaintext will have the following format:

typedef struct {

 uint8_t private_key_sign[32]; // private key for signing

 uint8_t private_key_dec[32]; // private key for decryption

 uint8_t encoded_certificate[ciphertext_length-16-32-32];

 // encoded 1609.2 Certificate

} PrivateKeyAndCertificate;

Note that the plaintext length is 16 bytes less than the ciphertext length because the ciphertext

includes a 16-byte MAC, internally generated by AES-CCM encryption and removed during

AES-CCM decryption.

Also note that the private_key_dec array contains 32 zero bytes if the certificate does not

contain a public key for encryption and no decryption operation can be performed.

A.2 Short-Lived Certificate Files

In order to use a short-lived certificate, a Vehicle Awareness Device needs access to (a) the

short-lived certificate (which includes a public verification key for messages signed using

that certificate’s private signing key) and (b) the private signing key associated with the

public verification key in the short-lived certificate. 288 short-lived certificates (with

associated private keys) are required to cover each day of operation. The LCDS will produce

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 74

a single file that contains the 288 short-lived certificates and associated private signing keys

for that day and copy as many of these files as necessary to each SD card to cover the period

when that SD card would be in use until it is replaced with a different SD card that contains

certificates for an additional period.

The file names used to hold the certificates will follow the pattern

“ShortLivedYYYYMMDD.crt” where YYYY is the 4-digit year, MM is the 2-digit month

(e.g., “01” for January, “12” for December), and DD is the 2-digit day of the month (e.g.,

“01” for the first day of the month) for the day on which the certificates contained in the file

are valid. (This date and all other times referred to in this document are UTC times. So, the

file “ShortLived20110701.crt” would contain certificates valid from 7/1/2011 12:00:00 AM

UTC until 7/2/2011 12:00:30 AM UTC.)

Within each file, the 288 certificates will be arranged in chronological order by the start time

of the period during which each certificate is valid. So, the first certificate in the file

ShortLived20110701.crt will be valid from 7/1/2011 12:00:00 AM until 7/1/2011 12:05:30

AM, the second certificate in this file will be valid from 7/1/2011 12:05:00 AM until

7/1/2011 12:10:30 AM, etc.

Each file will use the private-key-certificate file format specified above, where num_entries

= 288 and time_interval = 5 min. * 60 sec./min. = 300 (seconds). A single key will be

used for all devices and all device suppliers.

Because the encrypted private-signing-key/certificate entries are arranged chronologically

with 256 bytes reserved for each item, the nth entry in the file is always associated with the

nth time of the day. For example, the 7th entry is for the 7th time period of the day, so would

be valid from 12:30:00 AM until 12:35:30 AM. (If a certificate is not available for a specific

time period, the 256 bytes of the file reserved for that entry will be arbitrary except for the

ciphertext_length which will be zero, thus ensuring that the nth entry is always associated

with the nth time period of each day.)

A.3 RSE Certificate Files

In order to use an RSE certificate, an RSE needs access to (a) the certificate and (b) the

corresponding private key. Within each file a single or small number of certificates will be

arranged in chronological order by the start time of the period during which each certificate is

valid.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 75

The file names used to hold the WSA certificates will follow the pattern

“WSAYYYYMMDD.crt” where YYYY is the 4-digit year, MM is the 2-digit month and DD

is the 2-digit day of the month for the day of the start time of the first certificate in that file.

The file names for TIM certificates will follow the pattern “TIMYYYYMMDD.crt”, for

SPAT “SPATYYYYMMDD.crt” ,for MAP/GID “GIDYYYYMMDD.crt” and for encryption

certificates “ENCYYYYMMDD.crt” (used to send encrypted messages to CA/RA),

respectively.

If an RSE certificate has a validity period of more than one day, the certificate file name

reflects the first day on which that certificate is valid. If there is no new certificate on a

particular day, there is no file named after that day.

Each file will use the private-key-certificate file format specified in Section A.1, where

num_entries = 3 and time_interval = 10 months * 30 days/month * 24 hours/day * 60

min./hour * 60 sec./min. = 25920000 (seconds). A single key will be used for all devices and

all device suppliers. This key will be different from the key used for short-lived certificates.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 76

Appendix B: Security Profiles

B.1 Overall

These are the security profiles for use in Safety Pilot Model Deployment only. This document

does not constitute a commitment or indication as to the security profiles for use in any other

project or deployment.

 Needs

o All messages need to be signed so recipients can authenticate the source of

the message. Recipients have the responsibility to determine if they trust

the source.

o Signatures will be checked on messages were action results. Messages

collected in log files should be included regardless of authenticity.

o The same cryptographic signature (and if needed encryption) process

needs to be applied to all messages – BSM’s, TIM’s, SPaT’s, GID’s,

WSA’s, IP datagrams.

B.2 Security profile for BSM
5

The following security profile shall be used for the SAE J2735 Basic Safety Message (BSM).

B.2.1 General

For each PSID: As defined in device specifications

Use1609Dot2 – true.

B.2.2 Secure messaging (sending)

Field Value Notes
SignMessages True
SetGenerationTimeInSecurityHeade
rs

True The BSM does not contain sufficient time
information to prevent replay attacks.

SetExpiryTimeInSecurityHeaders False BSM does not use expiry time
SetGenerationLocationInSecurityHe
aders

False The BSM message itself contains the generation
location

SignerIdentifierType Adaptive If it has been half a second or more since a
certificate was sent, attach a certificate to the
message. Otherwise, attach a digest. A common
root certificate will always be used. CAMP
requires the OBE to support SignerIdentifierType =

5
 IEEE P1609.2™/D9 1 Draft Standard for Wireless Access in Vehicular Environments -

Security Services for Applications and Management Messages, May 2011.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 77

Certificate_Digest (1) and SignerIdentifierType =
Certificate (0)

SignerIdentifierCertChainLength -1 if used
SignWithFastVerification Compressed
EncryptMessages No

B.2.3 Secure messaging (receiving)

Field Value Notes
VerifyMessages Adaptive A receiving OBE shall only verify a

portion of received messages if the
messages would result in an alert
being raised to the driver based on an
efficient strategy. A receiving RSE
shall only verify messages if it would
take some action other than logging
as a result of those messages.

Check Validity Based on Generation Time True
GenerationTimeSource Security

Headers

Check Validity Based on Expiry Time False Generation time is enough for BSM
entities to judge relevance

ExpiryTimeOutsideSecurityHeaders n/a Expiry time is not used
Check Validity Based on Generation Location False In general, generation location is in

message and location relevance check
is carried out by receiving entity.

Generation Location Source Message Obtained from message.
AcceptEncryptedMessages False
DetectReplay True
MessageValidityPeriod Adaptive Configurable with default of 5s with a

range of 1 to 120s.
MessageValidityDistance n/a BSM security does not use generation

location – generation location is carried
in the payload and processed by the
entity

GenerationTimeConfidenceMultiplier Adaptive Default is 0, i.e. generation time
confidence is ignored

OverdueCrlTolerance Adaptive Default is: CRL freshness checking not
required.

SignWithFastVerification Adaptive Include compressed fast verification
information
if using explicit certificates.

ECPointFormat Compressed

 Security management

Field Value Notes
SigningKeyAlgorithm ECDSA-

256
6

EncryptionAlgorithm n/a BSM does not use encryption

6
 Correction from listing in D9.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 78

PublicKeyTransferType Implicit During initial testing, the Safety Pilot/Model Deployment Security
Management System will generate a “test root CA certificate” and
provide it to the vendors including the secret key. The vendors
can use it to generate unit certificates, and to start interoperability
testing at an early stage (before the official testing). Then, when
available, the Safety Pilot/Model Deployment Security
Management System will switch to the “real root CA certificate”
slightly before the official testing (and do not provide the secret
key to vendors).

ECPointFormat Compressed

B.3 Security profile for other Signed but NOT Encrypted

Messages

The following security profile shall be used for the Safety Pilot/Model Deployment messages

other than BSM’s and WSA’s that are signed but not encrypted – Signal Phase and Timing

(SPaT), Geometric Intersection Description (GID/MAP), and Traveler Information Message

(TIM).

B.3.1 General

For each PSID:

Use1609Dot2 – true.

B.3.2 Secure messaging (sending)

Field Value Notes
SignMessages True
SetGenerationTimeInSecurityHeaders True
SetExpiryTimeInSecurityHeaders False
SetGenerationLocationInSecurityHeade
rs

Adaptive True for SPAT, False for GID/MAP,TIM.

SignerIdentifierType Adaptive If it has been half a second or more since a
certificate was sent, attach a certificate to the
message. Otherwise, attach a digest. . A
common root certificate will always be used.

SignerIdentifierCertChainLength -1 if used Not used
SignWithFastVerification Compresse

d

EncryptMessages No

B.3.3 Secure messaging (receiving)

Field Value Notes
VerifyMessages Adaptive OBE will verify on state changes and as

capacity allows during steady states.
Check Validity Based on
Generation Time

True

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 79

GenerationTimeSource Security
Headers

Check Validity Based on Expiry
Time

False

ExpiryTimeOutsideSecurityHead
ers

n/a

Check Validity Based on
Generation Location

Adaptive True for SPAT, false for GID/MAP, for TIM

Generation Location Source External Security headers for SPAT, none for
GID/MAP, for TIM.

AcceptEncryptedMessages False
DetectReplay False Replay of e.g. GID/MAP message is not

an attack
MessageValidityPeriod 5s Configurable
MessageValidityDistance 500m Configurable
GenerationTimeConfidenceMultip
lier

0, i.e. generation time
confidence is
ignored

Configurable

OverdueCrlTolerance TBD – for November
deliveries, don’t check
CRL overdueness

SignWithFastVerification Compressed
ECPointFormat Compressed

B.3.4 Security management

Field Value Notes
SigningKeyAlgorithm ECDSA-256
EncryptionAlgorithm n/a
PublicKeyTransferType Implicit During initial testing, the Safety Pilot/Model Deployment

Security Management System will generate a “test root CA
certificate” and provide it to the vendors including the secret
key. The vendors can use it to generate unit certificates, and
to start interoperability testing at an early stage (before the
official testing). Then, when available, the Safety Pilot/Model
Deployment Security Management System will switch to the
“real root CA certificate” slightly before the official testing
(and do not provide the secret key to vendors).

ECPointFormat Compressed

B.4 Security profile for WME (Wave Service Announcements)
7

The WME security profile shall be the following:

 SignWithFastVerification -- Compressed

 MessageValidityPeriod – 60 s

7
 IEEE P1609.2™/D9 1 Draft Standard for Wireless Access in Vehicular Environments -

Security Services for Applications and Management Messages, May 2011.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 80

 MessageValidityDistance – 200m – in other words, WSAs from further away than

200m are rejected by the recipient

 GenerationTimeConfidenceMultiplier – 0

 RequiredCrlFreshness – Not checked

 SigningKeyAlgorithm – ECDSA-256

 EncryptionAlgorithm – None.

 PublicKeyTransferType – Implicit certificates

 ECPointFormat – Compressed

A WME shall sign a fresh WSA at the start of every minute, and shall continue to retransmit

that WSA until the end of that minute.

B.4.1 Application security profile equivalents

In terms of an application security profile, the WSA security profile looks like this:

B.4.2 Secure messaging (sending)

Field Value Notes
SignMessages True
SetGenerationTimeInSecurityHeaders True
SetExpiryTimeInSecurityHeaders True Expiry time shall be 60s after generation time
SetGenerationLocationInSecurityHeade
rs

True

SignerIdentifierType Certificate_Ch
ain

Send certificate with every transmission

SignerIdentifierCertChainLength 1
SignWithFastVerification Compressed
EncryptMessages No

B.4.3 Secure messaging (receiving)

Field Value Notes
VerifyMessages Adaptive Verify a WSA the first time it is received; do

not verify duplicates
Check Validity Based on
Generation Time

True

GenerationTimeSource Security
Headers

Check Validity Based on Expiry
Time

True

ExpiryTimeSource Security Headers
Check Validity Based on
Generation Location

True

Generation Location Source Security Headers
AcceptEncryptedMessages False
DetectReplay False WSAs are meant to be replayed.
MessageValidityPeriod 60s Configurable

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 81

MessageValidityDistance 500m Configurable
GenerationTimeConfidenceMultip
lier

0, i.e. generation time
confidence is
ignored

Configurable

OverdueCrlTolerance TBD – for November
deliveries, don’t check
CRL overdueness

SignWithFastVerification Compressed
ECPointFormat Compressed

B.4.4 Security management

Field Value Notes
SigningKeyAlgorithm ECDSA-256
EncryptionAlgorithm n/a
PublicKeyTransferType Implicit During initial testing, the Safety Pilot/Model Deployment

Security Management System will generate a “test root CA
certificate” and provide it to the vendors including the
secret key. The vendors can use it to generate unit
certificates, and to start interoperability testing at an early
stage (before the official testing). Then, when available, the
Safety Pilot/Model Deployment Security Management
System will switch to the “real root CA certificate” slightly
before the official testing (and do not provide the secret
key to vendors).

ECPointFormat Compressed

B.5 Security profile for Credential Management Messages

(signed and encrypted)

Safety Pilot/Model Deployment IP messages used to interact with the Security Credential

Management System shall use the certificate management messages defined in 1609.2 for

identified certs and WSA certs, and shall use the certificate management messages defined by

CAMP for anonymous certs. The encryption mechanism for credential management

messages is explicitly described in 1609.2, Section 9. Security Server Communication

Socket.

All communications and CSR certs shall be implicit certs using ECDSA-256.

Communications certificates used by RSEs in Model Deployment shall use the expiry field

and shall have a lifetime of one year, with a start time randomly set to some point within the

ten months preceding the start of Model Deployment (so most RSEs will change their

certificate at some point within model deployment). This will apply to both WSA and WSMP

certificates. CSR certificates used by RSEs in Model Deployment shall have an expiry date

of June 30, 2014. Certificate lifetimes shall be encoded as (duration and expiry), in other

words the flags use_start_validity and lifetime_is_duration shall be set.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 82

Communications certificates used by RSEs in Model Deployment shall be of type identified

(rather than identified_not_localized). They shall have a geographic scope in the form of a

circular region, with center set equal to the operating location of the RSE and radius set equal

to 10m.

RSE certificates shall not include an encryption key.

Each RSE shall have a single WSA certificate at any time; this WSA certificate shall contain

the following list of PSIDs and priorities:

[INSERT LIST HERE]

WSA certs shall not use Service Specific Permissions (SSPs).

RSE certificates shall not use the from_issuer value anywhere.

All certificates shall have crl_series value equal to 1.

The subject_name field for each RSE certificate shall contain an ASCII string giving the

unique name of that RSE device and the use of that certificate: for example “vendor1-rse1-

SPAT”, “vendor1-rse1-WSA”. This name shall appear in the communications certificate, the

CSR certificate, and each certificate request.

Certs used by OBEs, ASDs, and HIAs shall conform to the specification used by CAMP in

its model deployment.

B.6 Certificates

B.6.1 Communications certificates

Each communications certificate used by a unit of any time shall have only one PSID.

Each CSR certificate used by a unit of any time shall have only one PSID.

Certificates will not include Service Specific Permissions (SSPs).

B.6.2 Certificate chains

There shall be no intermediate certificates and no certificate chains in the safety pilot model

deployment. All certificates shall be issued directly by the root certificate.

B.6.3 Root certificate

There shall be a single root certificate. It shall have the following properties:

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 83

 It shall be an explicit certificate (version_and_type = 2)

 subject_type shall be root_ca.

 It shall have expiration time set to June 30, 2014 and crl_series set to 1.

 It shall not have the ContentFlag values use_start_validity or content_is_duration

set.

 The signing key shall be an ECDSA-256 key given in compressed form.

 It shall have the ContentFlag value encryption_key set and contain an encryption

key for ECIES-256 given in compressed form.

 The contents of the RootCaScope shall be:

o Name: No name provided

o Permitted_subject_types encoding: 83 ff (message_anonymous,

message_identified_not_localized, message_identified_localized,

message_csr, wsa, wsa_csr, message_ca, wsa_ca, crl_signer, message_ra)

o Message Permissions: None (ie can authorize any PSID)

o Wsa Permissions: None (ie can authorize any PSID and priority)

Geographic Region: None

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 84

Appendix C: Connection requirements

between LCM and Server

This appendix clarifies requirements regarding the LCM establishing and closing connections

with the server, according to the various phases of the message protocols.

C.1 Bootstrap

 The LCM shall establish a new connection with the server prior to sending the

bootstrap request.

 The LCM shall maintain the connection waiting for the bootstrap confirm.

 After the LCM receives a bootstrap confirm message, it shall maintain the

connection to send a bootstrap acknowledgement.

 After sending a bootstrap request, if the LCM receives a message other than a

bootstrap confirm message, the LCM shall close the connection with the server.

 After sending a bootstrap request, if the LCM does not receive a bootstrap

confirm message within its configured timeout period, the LCM shall close the

connection with the server.

 The LCM shall use the currently open (bootstrap request) connection to send the

bootstrap acknowledgement.

 After sending a bootstrap acknowledgement, the LCM shall close the connection

with the server.

C.2 Certificate Request

C.2.1 Certificate Request

 The LCM shall establish a new connection with the server prior to sending an

anonymous certificate request.

 The LCM shall maintain the connection waiting for an anonymous certificate

request confirm.

 After the LCM receives an anonymous certificate request confirm, it shall close

the connection with the server.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 85

 After sending an anonymous certificate request, if the LCM receives a message

other than an anonymous certificate request confirm, the LCM shall close the

connection with the server.

 After sending an anonymous certificate request, if the LCM does not receive an

anonymous certificate request confirm within its configured timeout period, the

LCM shall close the connection with the server.

C.2.2 Status Request

 The LCM shall establish a new connection with the server prior to sending a

status request.

 The LCM shall maintain the connection waiting for the status confirm.

 After the LCM receives a status confirm (success), the LCM shall maintain the

connection to send a certificate response acknowledgement.

 After the LCM receives a status confirm (failure), the LCM shall close the

connection with the server.

 After sending a status request, if the LCM receives a message that it cannot

decrypt, the LCM shall close the connection with the server.

 After sending a status request, if the LCM receives a message other than a status

confirm (success or failure), the LCM shall close the connection with the server.

 After sending a status request, if the LCM does not receive a status confirm

(success or failure) within its configured timeout period, the LCM shall close the

connection with the server.

C.2.3 Acknowledgement

 The LCM shall use the currently open (status request) connection to send a

certificate response acknowledgement.

 After sending a certificate response acknowledgement, the LCM shall close the

connection with the server.

C.3 Decryption-Key Request

 The LCM shall establish a new connection with the server prior to sending a

decryption-key request.

 The LCM shall maintain the connection waiting for a decryption-key confirm.

 After receiving a decryption-key confirm (success), the LCM shall maintain the

connection to send a decryption-key acknowledgement.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 86

 After receiving a decryption-key confirm (failure), the LCM shall close the

connection with the server.

 After sending a decryption-key request, if the LCM receives a message it cannot

decrypt, the LCM shall close the connection with the server.

 After sending a decryption-key request, if the LCM receives a message other than

a decryption-key confirm (success or failure), the LCM shall close the connection

with the server.

 If the LCM does not receive a decryption-key confirm (success or failure) within

its configured timeout, the LCM shall close the connection with the server.

 After sending a decryption-key acknowledgement, the LCM shall close the

connection with the server.

C.4 Report Misbehavior

 The LCM shall establish a new connection with the server prior to sending a

misbehavior report.

 The LCM shall maintain the connection waiting for a misbehavior-report

acknowledgement response.

 After receiving a misbehavior-report response, the LCM shall close the

connection with the server.

 After sending a misbehavior report, if the LCM receives a message it cannot

decrypt, the LCM shall close the connection with the server.

 After sending a misbehavior report, if the LCM receives a message other than a

misbehavior-report acknowledgement, the LCM shall close the connection with

the server.

 After sending a misbehavior report, if the LCM does not receive a misbehavior-

report acknowledgement within its configured timeout, the LCM shall close the

connection with the server.

C.5 CRL Request

 The LCM shall establish a new connection with the server prior to sending a CRL

request.

 The LCM shall maintain the connection waiting for a CRL confirm.

 After receiving a CRL confirm (success), the LCM shall close the connection

with the server.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 87

 After receiving a CRL confirm (failure), the LCM shall close the connection with

the server.

 After sending a CRL request, if the LCM receives a message it cannot decrypt,

the LCM shall close the connection with the server.

 After sending a CRL request, if the LCM receives a message other than a CRL

confirm (success or failure), the LCM shall close the connection with the server.

 After sending a CRL request, if the LCM does not receive a CRL confirm

(success or failure) within its configured timeout, the LCM shall close the

connection with the server.

Joint Program Office

U.S. Department of Transportation, Research and Innovative Technology Administration

Security Design 20120413 – Draft | 88

Appendix D: Registration process for ASDs

ASDs connect to the SCMS through the internet. This connection will be used to perform the

bootstrap process in order to provide each ASD with a valid CSR certificate. It has to be

ensured that only legitimate ASDs invoke the bootstrap process. ASDs will be required to

identify themselves through the name field in the MessageCaScope of the

BeSignedCertificateRequest that is used to request the CSR certificate. As per Section 5.2

this name has to be unique. A list of valid names will be given to each ASD supplier. Each

entry of the list can be used by a single ASD to generate a valid bootstrap request. Each list

entry can only be used once. Bootstrap requests that do not contain a valid name from the list

will be rejected.

D.1 File Format

The list will be distributed in ASCII file format. Each line of the file will specify the name

field in the MessageCaScope of the BeSignedCertificateRequest for a valid ASD. Each entry

will have at least 80 bits of entropy (that is equivalent to 13 random ASCII

characters/symbols).

U.S. Department of Transportation

ITS Joint Program Office-HOIT

1200 New Jersey Avenue, SE

Washington, DC 20590

Toll-Free “Help Line” 866-367-7487

www.its.dot.gov

[FHWA Document Number]

http://www.its.dot.gov/

